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Abstract Transportation discrete network design problem (DNDP) is about how to modify
an existing network of roads and highways in order to improve its total system travel time,
and the candidate road building or expansion plan can only be added as a whole. DNDP can
be formulated into a bi-level problem with binary variables. An active set algorithm has been
proposed to solve the bi-level discrete network design problem, while it made an assumption
that the capacity increase and construction cost of each road are based on the number of lanes.
This paper considers amore general casewhen the capacity increase and construction cost are
specified for each candidate plan. This paper also uses numerical methods instead of solvers
to solve each step, so it provides a more direct understanding and control of the algorithm and
running procedure. By analyzing the differences and getting corresponding solving methods,
amodified active set algorithm is proposed in the paper. In the implementation of the algorithm
and the validation, we use binary numeral system and ternary numeral system to avoid too
many layers of loop and save storage space. Numerical experiments show the correctness
and efficiency of the proposed modified active set algorithm.

Keywords Discrete network design · Bi-level problem · Binary variable · Modified active
set algorithm · Binary and ternary numeral system

1 Introduction

The transportation network design problem (NDP) is about how tomodify an existing network
of roads and highways in order to improve its total system travel time. For transportation
network, total system travel time is sum of the multiplication of link flow and link travel
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Fig. 1 Small example of discrete
network design problem

time for all the links. Modifications to the network can be adding new roads, or expanding
the capacities of existing roads. Studies on continuous network design problem could refer
to [15]. Discrete NDP (DNDP) is a sub subject of NDP where the capacities of new roads
and capacities added to existing roads are measured in candidate plans. As shown in Fig. 1,
the candidate plan can be adding new links to the network (red dash line), or expanding the
capacity of existing links (blue solid line). Since the construction and expansion projects are
fixed, adding a fractional plan is not meaningful, the candidate road building or expansion
plan can only be added as a whole.

Discrete network design problem relates to incremental network optimization, where
an existing network problem is allowed to be changed within a predefined range while
producing an incrementally optimal solution. Two versions of incremental minimum shortest
path problem have been considered in [12], where increments are measured via arc inclusions
and arc exclusions.

Discrete network design problem can be formulated into a bi-level problem with binary
variables. The upper-level problem is to minimize the total system travel time with a budget
constraint, which limits the number of new roads and road expansions to be added to the
existing network. The lower-level problem is a User Equilibrium (UE) problem [13]. It
describes howusers adjust their route choices according to the new roads and road expansions.

An active set algorithm [16] has been proposed to solve the bi-level transportation discrete
network design problem. It used the multipliers associated with the binary constraints to
estimate the changes in system delay with different road candidate plans. Then a binary
knapsack problem was constructed and solved to decide a plan to improve the system delay
and also satisfy the budget constraint. This procedure kept iterated until the system delay
couldn’t be improved any more.

In [16], it was assumed that in the candidate plans, either new links or new lanes were
added to the system. The capacity increase and construction cost of each road were based
on the number of lanes, i.e., they are the same for each lane of the same link, and the
maximum number of adding lanes is three. However, this might not always be the case. For
example, uneven lanes have different capacities. And for different extent of road expansion,
the construction costs could be different because of urban geographical change. Therefore,
it is more practical to specify the capacity increase and construction cost for each candidate
plan, and this is the problem analyzed in this paper. In [16], the authors use GAMS [11] to
solve the UE problem and binary knapsack problem by CONOPT [6] and CPLEX [4]. In
this paper, MATLAB is chosen to be the tool without using solvers. Every step is solved
by numerical methods, so it is more clear and has more physical meaning to have control
on each step. But this also means new ways need to be found to get some parameters that
can be easily solved from GAMS but not by MATLAB. Because of the problem and tool
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differences, this paper proposes a modified active set algorithm, and the numerical results
show the correctness and efficiency of the proposed modified active set algorithm.

Another contribution of this paper is in the implementation of the algorithm in the numer-
ical experiments. To avoid too many layers of loop and to save storage space of parameters, a
mapping between binary numeral system and decimal numeral system is used in the imple-
mentation of the modified active set algorithm. In the verification of numerical results, a
similar mapping between ternary numeral system and decimal numeral system is used for
the enumeration of all the possible improvement plans and calculation of their correspond-
ing UE total system travel time. These mapping skills have the potential for solving larger
problems.

The structure of this paper is as follows: Sect. 2 states the transportation discrete network
design bi-level problem. Section 3 describes the original active set algorithm. Section 4
discusses the problem difference and tool difference, then proposes the modified active set
algorithm. Section 5 contains the numerical experiments and the mapping details in the
implementation. Section 6 concludes this paper.

2 The discrete network design bi-level problem

Different from the literature [16], we assume in this paper that each candidate plan has
its own specific capacity increase and construction cost. Assuming there are two candidate
plans for each new link and existing link. Let a denote the link, xa be the link flow, ta
be the link travel time. ca,0 denote the original capacity of link a, Ā denote the candidate
links (including both new one and existing ones), ca,k, Ma,k,∀a ∈ Ā, k = 1, 2 denote the
capacity (or capacity increase for existing links) and construction cost for the candidate plans.
ya,k,∀a ∈ Ā, k = 1, 2 are binary variables, and 1means the corresponding plan is adopted, 0
means not. For each candidate link, only one (or none) plan can be adopted, so the constraint∑

k ya,k ≤ 1 must be hold. Another constraint is the budget with the total budget available
denoted as B. The objective function of the upper-level is to minimize the total system travel
time. The lower-level program is the normal UE problem under the whole improvement plan
given by all the ya,k . The DNDP bi-level problem formulation is as following:

min
y

∑

a

x∗
a · ta(x∗

a , ca,0 + ca,1ya,1 + ca,2ya,2) (1a)

s.t.
∑

a∈ Ā

Ma,1ya,1 + Ma,2ya,2 ≤ B (1b)

ya,1 + ya,2 ≤ 1, ∀a ∈ Ā (1c)

ya,k ∈ {0, 1}, ∀a ∈ Ā, k = 1, 2 (1d)

where (1e)

x∗
a = argmin

∑

a

∫ xa

0
ta(�, ca,0 + ca,1ya,1 + ca,2ya,2)d� (1f)

s.t.
∑

k

f rsk = qrs, ∀r, s (1g)

f rsk ≥ 0, ∀k, r, s (1h)

xa =
∑

rs

∑

k

f rsk δrsak, ∀a (1i)
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In model (1), the objective function (1a) is to minimize the total system travel time.
Constraint (1b) is to guarantee that the total construction cost is less than or equal to the
budget. Constraints (1c) and (1d) make sure that for each candidate link, only one candidate
plan is adopted (when ya,1 + ya,2 = 1) or no action is taken (when ya,1 = 0, ya,2 = 0).

For the lower problem, (1f) to (1i) is the BMW formulation [2] of the UE problem [13].
For transportation network, user equilibrium is based on the assumption that each user wishes
to minimize his/her travel time, so travel times on all used paths of each O–D pair are equal,
and the travel time on any unused path is equal to or greater than the used travel time. In that
case, no user can reduce his/her travel time by unilaterally changing path, so the network has
become stationary, i.e. user equilibrium. The mathematical expression for UE is:

f rsk · (crsk − crsmin) = 0, ∀k, r, s (2a)

crsk − crsmin ≥ 0, ∀k, r, s (2b)
∑

k

f rsk − qrs = 0, ∀r, s (2c)

f rsk ≥ 0, ∀k, r, s (2d)

The first two formula (2a) and (2b) guarantee that the travel times on all the used paths
k( f rsk �= 0) from origin r to destination s are equal to the minimum path travel time crsmin, and
the travel time on any unused path ( f rsk = 0) is equal to or greater than the minimum path
travel time, which is in accordance with the user equilibrium assumption. The third formula
(2c) is the O–D flow constraint. The fourth formula (2d) is the non-negative constraints of
path flow. Based on KKT conditions, the above expression (2) can be transformed into BMW
formulation [2] as shown in (1f) to (1i) where x∗

a is the optimal link flow in user equilibrium.
When ya,k are fixed, the lower UE problem can be solved by Frank–Wolfe algorithm

[3,7,9]. Frank Wolfe algorithm is an iterative first-order optimization algorithm for con-
strained convex optimization problems. According to BMW formulation of the UE problem,
to minimize the total system travel time, the O–D flow should be assigned to the shortest
path connecting that O–D pair, i.e., all-or-nothing assignment. Dijkstras Algorithm [1,5,14]
can be used to find the shortest path. The step size can be determined by conducting the line
search using bisection method or golden section search.

3 The original active set algorithm

Based on the assumption that capacity increase and construction cost of each road are based
on the number of lanes, Zhang et.al. [16] proposed an active set approach to solve DNDP
problem. The binary variables ya,k were divided into two active sets:

Ω0 = {(a, k) : ya,k = 0} (3a)

Ω1 = {(a, k) : ya,k = 1} (3b)

For given active sets, the improvement plan is fixed, so the lower-level UE can be solved
and the total system travel time can be obtained. The basic idea of the active set approach is
to move the elements between these two sets under the constraint of budget and to make the
total system travel time smaller.

In the literature, the road design plan is based on the number of lanes. The construction
cost on each lane of the same link is equal. The number of additional lanes is assumed to
be three or less, and two binary variables ya,1 and ya,2 are used to determine the number of
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new lanes to add to link a.ya,1 + 2ya,2 varies between zero and three when ya,1 and ya,2 are
either 0 or 1. And with this notation, ya,1 and ya,2 can both be 1 (three new lanes). So the
constraint

∑
k ya,k ≤ 1 does not exist for the literature problem.

Besides, the construction cost and capacity increase of adding one lane on linka is assumed
to be equal and denoted by πa and c1a . So the budget constraint becomes:

∑

a∈ Ā

πa(ya,1 + 2ya,2) ≤ B (4)

And the travel time BPR function [13] becomes:

ta(xa, ya) = t0a

{

1 + 0.15

[
xa

c0a + (ya,1 + 2ya,2)c1a

]4}

(5)

where t0a is the free-flow travel time and c0a is the original capacity.
With the two active sets Ω0 and Ω1 to express the binary variables ya,k , the formulation

for the literature problem is as following:

min
y

∑

a

x∗
a · ta(x∗

a , c
0
a + (ya,1 + 2ya,2)c

1
a) (6a)

s.t.
∑

a∈ Ā

πa(ya,1 + 2ya,2) ≤ B (6b)

ya,k = 0, ∀(a, k) ∈ Ω0 (6c)

ya,k = 1, ∀(a, k) ∈ Ω1 (6d)

where (6e)

x∗
a = argmin

∑

a

∫ xa

0
ta(�, ca,0 + (ya,1 + 2ya,2)c

1
a)d� (6f)

s.t.
∑

k

f rsk = qrs, ∀r, s (6g)

f rsk ≥ 0, ∀k, r, s (6h)

xa =
∑

rs

∑

k

f rsk δrsak, ∀a (6i)

The lower-level UE program can be expressed by variational inequalities [8], so the bi-
level problem can be denoted by a one-level optimization problem.

Let λa,k and μa,k denote the multipliers associated with the constraints ya,k = 0 and
ya,k = 1 respectively. It is suggested in the literature that the values of these multipliers
estimate the changes in the system delay. Thus, if λa,k < 0 for some (a, k) ∈ Ω0, it may
be beneficial to shift (a, k) from Ω0 to Ω1; if μa,k > 0 for some (a, k) ∈ Ω1, it may be
beneficial to shift (a, k) from Ω1 to Ω0. Let ga,k = 1 mean shifting (a, k) from Ω0 to Ω1

and ha,k = 1 mean shifting (a, k) from Ω1 to Ω0, the change of the total system travel time
is estimated approximately as:

∑

(a,k)∈Ω0

λa,kga,k −
∑

(a,k)∈Ω1

μa,kha,k (7)

The objective function of the whole problem is to minimize total system travel time, so
to minimize the above expression (and to be negative) is to find a design plan that can have
minimum total system travel time. However, because the KKTmultipliers are only estimates
of the changes, the above expression does not necessarily mean the real change of the total
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system travel time. If the minimum solution of ga,k and ha,k could not decrease the total
system travel time, new ga,k and ha,k solutions need to be found to have as small value for
the above expression as possible. A constraint is used to denote this procedure:

∑

(a,k)∈Ω0

λa,kga,k −
∑

(a,k)∈Ω1

μa,kha,k ≥ θ (8)

where θ = ε + ∑
(a,k)∈Ω0

λa,k ĝa,k − ∑
(a,k)∈Ω1

μa,k ĥa,k, ε is a sufficiently small positive

number, ĝa,k and ĥa,k are the minimum solution for the last run.
As there is also a budget constraint, the resulting active sets should be budget feasible.

Thus the active sets adjusting problem is as following:

min
g,h

∑

(a,k)∈Ω0

λa,kga,k −
∑

(a,k)∈Ω1

μa,kha,k (9a)

s.t.
∑

(a,k)∈Ω0

πa2
k−1ga,k −

∑

(a,k)∈Ω1

πa2
k−1ha,k ≤ B −

∑

(a,k)∈Ω1

πa2
k−1 (9b)

∑

(a,k)∈Ω0

λa,kga,k −
∑

(a,k)∈Ω1

μa,kha,k ≥ θ (9c)

ga,k, ha,k ∈ {0, 1}, ∀a ∈ Ā, k = 1, 2 (9d)

The above is the basic idea behind the original active set algorithm. It is a two-loop
algorithm as shown below. The outer loop (Steps 0–2) iterates over the active pairs, calculates
the total system travel time and it should be less than its predecessor. The inner loop (Steps
2a–2c) iterates over the feasible adjustment plans to find ga,k and ha,k , if possible, that leads
to a decrease in total system travel time than the current active pair. If this is not possible,
the algorithm stops.

The original active set algorithm is as follows:

Original Active Set Algorithm
Step 0: Set Ω0 = {(a, k) : a ∈ Ā, k = 1, 2}, and Ω1 = ∅.
Step 1: Solve the one-level optimization problem with (Ω0,Ω1), and determine λa,k

and μa,k with the constraints ya,k = 0 and ya,k = 1. Calculate the total
system travel time T T and go to Step 2.

Step 2: Set θ = −∞ and adjust the active sets by performing the following steps:
(a) Let (ĝ, ĥ) solve the adjustment problem (9). If the optimal objective

value is zero, stop, and the active sets in step 1 is the best design plan.
Otherwise, go to Step 2b.

(b) Set
i. ϕ̂ = ∑

(a,k)∈Ω0
λa,k ĝa,k − ∑

(a,k)∈Ω1
μa,k ĥa,k

ii. Ω̂0 = (Ω0 − {(a, k) ∈ Ω0 : ĝa,k = 1}) ∪ {(a, k) ∈ Ω1 : ĥa,k = 1}
iii. Ω̂1 = (Ω1 − {(a, k) ∈ Ω1 : ĥa,k = 1}) ∪ {(a, k) ∈ Ω0 : ĝa,k = 1}

(c) Solve a UE problem with (Ω̂0, Ω̂1). If the total system travel time is less
than T T , go to Step 2d. Otherwise, set θ = ε + ϕ̂, and return to Step
2a.

(d) Set Ω0 = Ω̂0,Ω1 = Ω̂1. Go to Step 1.
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4 The modified active set algorithm

Different from [16], we consider a more general case and assume that the road design plan
is expressed by two candidate plans for each new link and existing link. For each candidate
link, only one (or none) plan can be adopted, so the constraint

∑
k ya,k ≤ 1 must be hold.

Besides, to provide a more direct understanding and control of the algorithm and running
procedure, MATLAB is used instead of GAMS, the multipliers and the Step 2a problem
are solved without using solvers. These differences lead to three problems: how to express∑

k ya,k ≤ 1 in the algorithm, how to calculate multipliers λa,k and μa,k , and how to solve
Step 2a.

4.1 Expression of one-or-none constraint

For our problem, the constraint

ya,1 + ya,2 ≤ 1, ∀a ∈ Ā (10)

must hold for every candidate link. The active set algorithm is an iterative procedure. Assume
ya,k = 0, then according to the definition of ga,k and ha,k, ga,k can be either 0 or 1, ha,k

must be 0. Since ga,k = 1 means shifting (a, k) from Ω0 to Ω1, the new ŷa,k is equal to ga,k ,
and since ya,k = 0, it can also be expressed as ŷa,k = ya,k + ga,k . Similarly, when ya,k = 1,
then ha,k can be either 0 or 1, ga,k must be 0. ha,k = 1 means shifting (a, k) from Ω1 to Ω0,
the new ŷa,k = ya,k − ha,k .

Combining the above two situations, the evolution of ya,k becomes:

ŷa,k = ya,k + ga,k − ha,k (11)

In the iterative procedure, the constraint
∑

k ya,k ≤ 1 should be hold for every iteration
to make sure the solution is practical. So the following constraint could be added to Step 2a
to express

∑
k ya,k ≤ 1:

∑

k

ya,k + ga,k − ha,k ≤ 1, ∀a ∈ Ā (12)

4.2 Calculation of multipliers

For themeaning of themultipliers, it is indicated in [16] that the values ofmultipliers estimate
the changes in the system delay. Larsson and Patriksson [10] indicated that the Lagrange
multiplier values are the shadow prices for the constraints, that is, the sensitivities of the
objective function with respect to the right-hand side of the constraints. MATLAB cannot
get multiplier values automatically. However, from the above meaning of the multipliers, by
changing the value of ya,k and calculating the UE total travel time, then the difference with
the original UE travel time is an estimation of the multiplier.

Since λa,k and μa,k denote the multipliers associated with the constraints ya,k = 0 and
ya,k = 1, it can be expanded that when ya,k = 1, λa,k = 0; when ya,k = 0, μa,k = 0. Using
z to express the original objective function value (total system travel time), z′ expressing the
new one, a direct thought is: when ya,k = 0, others remain the same, only change y′

a,k = 1,
then λa,k = (z′ − z)/(1− 0) = z′ − z; when ya,k = 1, others remain the same, only change
y′
a,k = 0, then μa,k = (z′ − z)/(0 − 1) = z − z′. So the calculation of λa,k and μa,k can be
expressed as:
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{
ya,k = 0 : λa,k = z′ − z μa,k = 0

ya,k = 1 : λa,k = 0 μa,k = z − z′
(13)

The above thought is quite straight forward, however, it is not practical because it might
violate the constraint of

∑
k ya,k ≤ 1. Let (0, 0) denote the case that ya,1 = 0 and ya,2 =

0, (1, 0) denote that ya,1 = 1 and ya,2 = 0, (0, 1) denote that ya,1 = 0 and ya,2 = 1, these
are the only adoption plans for link a. In the (0, 0) case, there would be no problem when
changing one single 0 to 1. However, in the case of (1, 0) and (0, 1), when change the 0 to 1 to
calculate λa,k , the new plan would become (1, 1), which is not practical. For the calculation
of μa,k , since it is generated by changing 1 to 0, there is no such problem. So the above
expression should be modified to calculate λa,k .

The problem happens at (1, 0) and (0, 1), so these two situations will be analyzed respec-
tively. In the case of (1, 0), we have λa,1 = 0, μa,2 = 0, so only λa,2 and μa,1 need to
be calculated. There is no problem with the calculation of μa,1. Using z0,0, z1,0, and z0,1 to
express the total system travel time under (0, 0), (1, 0) and (0, 1), then μa,1 = z1,0 − z0,0.
For λa,2, (1, 1) case is not practical, so it can only be changed to (0, 1). In this case (change
from (1, 0) to (0, 1)), considering about the objective function in Step 2a (which is an approx-
imation of the change in total system travel time), the function would become z0,1 − z1,0 =
−μa,1 + λa,2, so λa,2 = z0,1 − z0,0. Similarly, in the case of (0, 1), λa,1 = z1,0 − z0,0.

The calculation of λa,k and μa,k can be summarized as:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0, 0) : λa,1 = z1,0 − z0,0 λa,2 = z0,1 − z0,0
μa,1 = 0 μa,2 = 0

(1, 0) : λa,1 = 0 λa,2 = z0,1 − z0,0
μa,1 = z1,0 − z0,0 μa,2 = 0

(0, 1) : λa,1 = z1,0 − z0,0 λa,2 = 0
μa,1 = 0 μa,2 = z0,1 − z0,0

(14)

4.3 Step 2 solving procedures

Step 2a is a binary integer optimization problem. ga,k and ha,k are decision variables and
also binary variables. In the inner loop of Step 2 (Steps 2a–2c), Step 2a problem was solved
iteratively with increasing θ to get the solution which can really reduce the total system
travel time. Without using binary integer optimization solvers but only basic MATLAB, new
approaches need to be used to solve the problem.

Since ga,k and ha,k are binary variables, and both the constraints and objective function are
linear which does not require large amount of computation, a direct thought is to enumerate
all the possible ga,k and ha,k that satisfy the constraints, and calculate the objective function
value. The values are sorted in ascending order, and the pair with the minimum value (which
should be less than or equal to zero) is the optimal solution.

The enumeration method has a bonus advantage for Step 2c. In this step, the UE total
system travel time is calculated to test whether the solution really reduce the total system
travel time. If not, θ is increased tomake sure a new solution can be obtained. The enumeration
method has a sorted group of ga,k and ha,k , so with the same idea in Step 2c, if the pair with
the smallest value cannot reduce the total system travel time, the pair with the second smallest
value will be tested. This procedure continues until the pair of ga,k and ha,k which can really
reduce the total system travel time is found. And if the smallest value is equal to zero, this
means the total system travel time cannot be reduced according to the estimated change, then
the algorithm stops.
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4.4 The modified active set algorithm

Summarizing the above differences and corresponding solving procedures, the modified
active set algorithm for our problem is as following:

Modified Active Set Algorithm
Step 0: Set Ω0 = {(a, k) : a ∈ Ā, k = 1, 2}, and Ω1 = ∅.
Step 1: Get total system travel time T T and multiplier values λa,k and μa,k .

(a) Solve the UE problemwith (Ω0,Ω1) using Frank–Wolfe Algorithm, and
calculate the total system travel time T T .

(b) Change one ya,k at each time and re-solve the UE problem to calculate
the values of λa,k and μa,k according to (14).

(c) Go to Step 2.
Step 2: Find the new active sets (Ω̂0, Ω̂1) which can reduce the total system travel

time.
(a) Enumerate all the feasible pairs of ga,k and ha,k which satisfy the fol-

lowing constraints:∑
a,k Ma,kga,k − ∑

a,k Ma,kha,k + ∑
a,k Ma,k ya,k ≤ B

∑
k ya,k + ga,k − ha,k ≤ 1, ∀a ∈ Ā

ga,k, ha,k ∈ {0, 1}, ∀a ∈ Ā, k = 1, 2
For each feasible pair of ga,k and ha,k , calculate the following value:∑

a,k λa,kga,k − μa,kha,k

Sort the values in ascending order, also the corresponding ga,k and ha,k .
If the smallest value (ĝa,k and ĥa,k is the corresponding pair) is zero,
stop, and the active sets in step 1 is the best design plan. Otherwise,
go to Step 2b.

(b) Set
i. ŷa,k = ya,k + ĝa,k − ĥa,k

ii. Ω̂0 = {(a, k) : ŷa,k = 0}
iii. Ω̂1 = {(a, k) : ŷa,k = 1}

(c) Solve a UE problem with (Ω̂0, Ω̂1). If the total system travel time is
less than T T , go to Step 2d. Otherwise, set ĝa,k and ĥa,k with the pair
corresponding to the second smallest value. If this value is zero, stop,
the active sets in step 1 is the best design plan. Otherwise, return to
Step 2b.

(d) Set Ω0 = Ω̂0,Ω1 = Ω̂1. Go to Step 1.

5 Numerical experiments1

The data for the Sioux Falls candidate improvement plans is shown in Fig. 2 and Tables 1,
2, and 3.

1 Code provided on http://ximing.wix.com/ximing#!research/c1ac3
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Fig. 2 Candidate highway improvement problem on the network

5.1 Solution under certain budget

When implementing our modified active set algorithm, in Step 2a, it needs an enumeration
of all the feasible pairs of ga,k and ha,k . Our example problem has 8 candidate links (6
new candidate links and 2 existing candidate links), and each link has 2 candidate plans.
ga,k and ha,k are corresponding to ya,k = 0 and ya,k = 1 respectively. As ga,k and ha,k

are binary variables, there are totally 216 = 65,536 combinations (without considering the
constraints). To express this large number of enumeration is a problem. 16 layers of loop
does not make sense and is too tedious. Also the algorithm needs to store ga,k and ha,k sorted
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by the objective function value. Binary ga,k and ha,k need very large multiple dimensional
matrix to store them. In our implementation, a mapping between binary numeral system
and decimal numeral system is utilized to stand for ga,k and ha,k , and it is quite efficient in
enumeration and storage.

Let m and n (m + n = 16) denote the number of ya,k = 0 and ya,k = 1, then the different
possibilities for ga,k and ha,k are 2m and 2n , respectively. The binary ga,k is in the form

(b1, b2, . . . , bm), bi ∈ {0, 1}, i = 1, 2, . . . ,m

The above binary value can be transformed into decimal number 20b1 + 21b2 + · · · +
2m−1bm . Each binary value has a uniquemapping decimal number, and equally, each decimal
number maps a unique binary number. So using a loop for decimal g to be from 0 to 2m − 1,
the corresponding binary ga,k will cover all the possibilities of ga,k . The decimal values will
be stored in order. This will be just one vector, so it is very easy and efficient in storage.
The same case is for ha,k . A total number of 2m × 2n = 216 = 65,536 combination will be
calculated, the same as the binary case, so the enumeration is comprehensive.

When getting all the feasible pairs of ga,k and ha,k which satisfy all the constraints and
their corresponding objective function value, they are sorted and as an input to Step 2b. The
stored g and h are decimal numbers, in this stage, the decimal number can be transformed
back into binary number ga,k and ha,k for further calculation.

When the total budget available is $95 million. The optimal improvement plan solved by
our modified active set algorithm is:

ya,k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
1 0
0 1
0 1
1 0
1 0
0 1
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The total system travel time is 1196.9 (103veh · min/h), less than the original network UE
total system travel time 1271.3. The total construction cost is $95million, equal to the budget.
The running time is 85.7 sec. The Step 1 outer loop has 2 iterations; the Step 2 inner loop has
1 iteration. The majority of the computational time was spent on the UE problem in Step 1.

5.2 Validation of the solutions

To check whether the solution got by our modified active set algorithm is the true optimal
solution that minimizes the total system travel time, an enumeration of all the possible
improvement plans and calculation of their corresponding UE total system travel time is
performed. For each candidate link, there are three possibilities, so there are a total of 38 =
6561 improvement plans (without considering about the budget constraint).

For this enumeration, a mapping between ternary numeral system and decimal numeral
system is used. Using pi ∈ {0, 1, 2}, i = 1, 2, . . . , 8 to denote the candidate plan for each
link i.pi = 0 means no candidate plan is adopted, pi = 1 means candidate plan 1 is adopted,
pi = 2 means candidate plan 2 is adopted. The improvement plan could be expressed as

(p1, p2, . . . , p8), pi ∈ {0, 1, 2}, i = 1, 2, . . . , 8
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Table 1 Original link capacity and free-flow travel time

Link number Free-flow travel
time (min)

Capacity
(103 veh/h)

Link number Free-flow travel
time (min)

Capacity
(103 veh/h)

1 3.60 6.02 39 2.40 10.18

2 2.40 9.01 40 2.40 9.75

3 3.60 12.02 41 3.00 10.26

4 3.00 15.92 42 2.40 9.85

5 2.40 46.81 43 3.60 27.02

6 2.40 34.22 44 3.00 10.26

7 2.40 46.81 45 2.40 9.64

8 2.40 25.82 46 2.40 20.63

9 1.20 28.25 47 3.00 10.09

10 3.60 9.04 48 3.00 10.27

11 1.20 46.85 49 1.20 10.46

12 2.40 13.86 50 1.80 39.36

13 3.00 10.52 51 4.20 9.99

14 3.00 9.92 52 1.20 10.46

15 2.40 9.90 53 1.20 9.65

16 1.20 21.62 54 1.20 46.81

17 1.80 15.68 55 1.80 39.36

18 1.20 46.81 56 2.40 8.11

19 1.20 9.80 57 2.40 4.42

20 1.80 15.68 58 1.20 9.65

21 2.00 10.10 59 2.40 10.01

22 3.00 10.09 60 2.40 8.11

23 3.00 20.00 61 2.40 6.05

24 2.00 10.10 62 3.60 10.12

25 1.80 27.83 63 3.00 10.15

26 1.80 27.83 64 3.60 10.12

27 3.00 20.00 65 1.20 10.46

28 3.60 27.02 66 1.80 9.77

29 3.00 10.27 67 2.40 20.63

30 4.20 9.99 68 3.00 10.15

31 3.60 9.82 69 1.20 10.46

32 3.00 20.00 70 2.40 10.00

33 3.60 9.82 71 2.40 9.85

34 2.40 9.75 72 2.40 10.00

35 2.40 46.81 73 1.20 10.16

36 3.60 9.82 74 2.40 11.38

37 1.80 51.80 75 1.80 9.77

38 1.80 51.80 76 1.20 10.16
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Table 2 O–D trip matrix for the network (103 veh/h)

1 2 4 5 10 11 13 14 15 19 20 21 22 24

1 1.32 1.32 1.32 1.08 1.10 1.25 0.99 0.95 0.90 0.59 0.59 0.77 0.74

2 1.32 1.25 1.30 1.10 1.12 0.90 0.95 0.94 1.30 0.59 0.68 0.67 0.59

4 1.32 1.25 1.32 1.08 1.07 0.95 0.90 0.84 0.80 1.62 0.64 0.59 0.80

5 1.32 1.30 1.32 1.13 0.97 0.91 0.88 0.81 0.73 0.80 0.81 0.94 0.59

10 1.08 1.10 1.08 1.13 1.33 0.90 0.99 1.32 1.17 0.95 0.90 0.97 0.59

11 1.10 1.12 1.07 0.97 1.33 0.94 1.32 1.11 0.95 0.74 0.61 1.10 1.05

13 1.25 0.90 0.95 0.91 0.90 0.94 0.87 0.86 0.68 0.59 0.62 0.67 1.32

14 0.99 0.95 0.90 0.88 0.99 1.32 0.87 1.32 1.13 0.95 0.87 0.90 1.13

15 0.95 0.94 0.84 0.81 1.32 1.11 0.86 1.32 1.32 1.27 1.14 1.32 0.91

19 0.90 1.30 0.80 0.73 1.17 0.95 0.68 1.13 1.32 1.32 1.11 1.10 0.80

20 0.59 0.59 1.62 0.80 0.95 0.74 0.59 0.98 1.27 1.32 1.32 1.32 0.61

21 0.59 0.68 0.64 0.81 0.90 0.61 0.62 0.87 1.14 1.11 1.32 1.32 1.32

22 0.77 0.67 0.59 0.94 0.97 1.10 0.67 0.90 1.32 1.10 1.32 1.32 1.13

24 0.74 0.59 0.80 0.59 0.59 1.05 1.32 1.13 0.91 0.80 0.61 1.32 1.13

Table 3 Candidate highway plans and specifications

Link number Free-flow travel
time (min)

Capacity
(103 veh/h)

Construction
cost (million $)

Construction of new candidate links

A#1 4.00 4.0 10

4.00 6.0 15

A#2 4.00 4.0 10

4.00 6.0 15

B#1 3.50 4.0 9

3.50 6.0 14

B#2 3.50 4.0 9

3.50 6.0 14

C#1 4.00 6.0 15

4.00 8.0 22

C#2 4.00 6.0 15

4.00 8.0 22

Link number Capacity increase (103 veh/h) Construction cost (million $)

Expansion of existing candidate links

2 2.0 3

4.0 6

57 2.0 3

4.0 6
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The above ternary number can be transformed into decimal number 30 p1 + 31 p2 + · · · +
37 p8. The enumeration of the 6561 plans can use a loop for decimal number to be from 0 to
6560, the corresponding ternary number will cover all the possibilities.

In the enumeration, if the budget constraint is checked before performing UE, then there
are 6377 plans that are budget feasible for $95 million and they all need to have their UE
total system travel time calculated. The result with the minimum total system travel time is
the same with the plan solved by our modified active set algorithm. However, the running
time is 4h and 50min. So our proposed modified active set approach is much more effective.

To check whether this program is effective for other budgets, firstly all the 6561 cases
were calculated for their total system travel time. The total running time for the 6561 cases
is 5h and 6min.

Then, to verify the results of our modified active set algorithm, the budget starts with the
maximum total cost of all the plans, i.e. $114 million. The resulting optimal plan also has
a total money of $114 million. Then reduce this by $1 million, running with budget $113
million. The resulting optimal plan has a total money of $109 million. Then the running
budget is $108 million, and so on. The result is shown in Table 4.

The result shows a very good performance under different budgets. All the active set
approach solution is the true optimal solution.

When the budget is $95 million, the iteration count is rather small, only 2 Step1 iterations
and 1 Step2 inner iteration. This means the program directly found the optimal solution
by just using the combination of λa,k and μa,k . When there are 3 Step1 iterations, the
direct combination solution is not the optimal solution, so more iterations were taken and
achieved the optimal result. This demonstrates the correctness of the algorithm from another
side.

Solving the UE problem consumes the majority of the computational time. For each
budget, the number of UE calculation is: 16×(Step 1 Outer Iter)+1× (Step 2 Inner Iter).
Most of the budgets has 2 Step1 iterations and 1 Step2 iteration, so UE problem was solved
33 times. Some budgets has 3 Step1 iterations and 2 Step2 iterations, so UE problem was
solved 50 times, and this is the maximum number of UE calculations for any budget for this
network.

Compared with enumeration method, the budget feasible plans have thousands of counts,
and each count needs to calculate their UE travel time. So for budget over $16 million, the
modified active set algorithm is more efficient than enumeration method and can get the true
optimal solution within 3min.

The budget and the corresponding minimum total system travel time are plotted in Fig. 3.
For any budget, the slope of the line connecting the left most point (budget=0) and the

budget point can represent the efficiency of money to improve the total system travel time
(103 veh · min/h per million$). It can been seen from Fig. 3 that the efficiency of money is
gradually decreasing when the budget increases.

6 Conclusion

Transportation discrete network design problem can be formulated into a bi-level problem
with binary variables and solved by active set algorithm. The original active set algorithm
assumed that the capacity increase and construction cost of each road are the same for each
lane of the same link.We consider amore general case in this paperwhen the capacity increase
and construction cost are specified for each candidate plan. Every step is solved by numerical
methods instead of optimization solvers to provide a more direct understanding and control
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Fig. 3 Budget and the corresponding minimum total system travel time

of the algorithm and running procedure. Because of the problem and tool differences, we
modify the original active set algorithm and propose our own algorithm, and also use binary
and ternary numeral system in the implementation and validation to avoid too many layers
of loop and save storage space. Numerical experiments show the correctness and efficiency
of the proposed modified active set algorithm.

In the validation, the proposed algorithm is effective for different budgets, but it will be
more convincing to have more validations on other networks to demonstrate the effectiveness
of the algorithm. Because the multiplier only considers the single change of ya,k , the combi-
nation of the change when multiple ya,k are changing is only a very rough estimation of the
true change. That is why Step 2 needs an inner loop. In further study, more networks could
be experimented to give firmer justification on the effectiveness of the proposed modified
active set algorithm.
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