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Abstract Support Vector Machines (SVM) is one of the well known supervised
classes of learning algorithms. SVM have wide applications to many fields in recent
years and also many algorithmic and modeling variations. Basic SVM models are
dealing with the situation where the exact values of the data points are known. This
paper presents a survey of SVM when the data points are uncertain. When a direct
model cannot guarantee a generally good performance on the uncertainty set, robust
optimization is introduced to deal with the worst case scenario and still guarantee
an optimal performance. The data uncertainty could be an additive noise which is
bounded by norm, where some efficient linear programming models are presented
under certain conditions; or could be intervals with support and extremum values; or
a more general case of polyhedral uncertainties with formulations presented. Another
field of the uncertainty analysis is chance constrained SVM which is used to ensure the
small probability of misclassification for the uncertain data. The multivariate Cheby-
shev inequality and Bernstein bounding schemes have been used to transform the
chance constraints through robust optimization. The Chebyshev based model employs
moment information of the uncertain training points. The Bernstein bounds can be less
conservative than the Chebyshev bounds since it employs both support and moment
information, but it also makes a strong assumption that all the elements in the data set
are independent.
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1 Introduction

As one of the well known supervised learning algorithms, Support Vector Machines
(SVM) are gaining more and more attention. It was proposed by Vapnik [1,2] as a
maximum-margin classifier, and tutorials on SVM could refer to [3–6]. In recent years,
SVM have been applied to many fields and have many algorithmic and modeling vari-
ations. In the biomedical field, SVM have been used to identify physical diseases
[7–10] as well as psychological diseases [11]. Electroencephalography (EEG) signals
can also be analyzed using SVM [12–14]. Besides these, SVM also applied to pro-
tein prediction [15–19] and medical images [20–22]. Computer vision includes many
applications of SVM like person identification [23], hand gesture detection [24], face
recognition [25] and background subtraction [26]. In geosceinces, SVM have been
applied to remote sensing analysis [27–29], land cover change [30–32], landslide
susceptibility [33–36] and hydrology [37,38]. In power systems, SVM was used for
transient status prediction [39], power load forecasting [40], electricity consumption
prediction [41] and wind power forecasting [42]. Stock price forecasting [43–45] and
business administration [46] can also use SVM. Other applications of SVM include
agriculture plant disease detection [47], condition monitoring [48], network security
[49] and electronics [50,51]. When basic SVM models cannot satisfy the application
requirement, different modeling variations of SVM can be found in [52].

In this paper, a survey of SVM with uncertainties is presented. Basic SVM models
are dealing with the situation that the exact values of the data points are known. When
the data points are uncertain, different models have been proposed to formulate the
SVM with uncertainties. Bi and Zhang [53] assumed the data points are subject to an
additive noise which is bounded by the norm and proposed a very direct model. How-
ever, this model cannot guarantee a generally good performance on the uncertainty
set. To guarantee an optimal performance when the worst case scenario constraints
are still satisfied, robust optimization is utilized. Trafalis et al. [54–58] proposed a
robust optimization model when the perturbation of the uncertain data is bounded by
norm. Ghaoui et al. [59] derived a robust model when the uncertainty is expressed
as intervals. Fan et al. [60] studied a more general case for polyhedral uncertainties.
Robust optimization is also used when the constraint is a chance constraint which is
to ensure the small probability of misclassification for the uncertain data. The chance
constraints are transformed by different bounding inequalities, for example multivari-
ate Chebyshev inequality [61,62] and Bernstein bounding schemes [63].

The organization of this paper is as follows: Sect. 2 gives an introduction to the basic
SVM models. Section 3 presents the SVM with uncertainties, stating both the robust
SVM with bounded uncertainty and chance constrained SVM through robust opti-
mization. Section 4 presents concluding remarks and suggesting for further research.

2 Basic SVM Models

Support Vector Machines construct maximum-margin classifiers, such that small per-
turbations in data are least likely to cause misclassification. Empirically, SVM works
really well and are well known supervised learning algorithms proposed by Vap-
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nik [1,2]. Suppose we have a two-class dataset of m data points {xi , yi }m
i=1 with

n-dimensional features xi ∈ R
n and respective class labels yi ∈ {+1,−1}. For lin-

early separable datasets, there exists a hyperplane w�x + b = 0 to separate the two
classes and the corresponding classification rule is based on the sign(w�x +b). If this
value is positive, x is classified to be in +1 class; otherwise, −1 class.

The datapoints that the margin pushes up against are called support vectors. A
maximum-margin hyperplane is one that maximizes the distance between the hyper-
plane and the support vectors. For the separating hyperplane w�x + b = 0, w and b
could be normalized so that w�x + b = +1 goes through support vectors of +1 class,
and w�x + b = −1 goes through support vectors of −1 class. The distance between
these two hyperplane, i.e., the margin width, is 2

‖w‖2
2
, therefore, maximization of the

margin can be performed as minimization of 1
2‖w‖2

2 subject to separation constraints.
This can be expressed as the following quadratic optimization problem:

min
w,b

1

2
‖w‖2

2 (1a)

s.t. yi (w�xi + b) ≥ 1, i = 1, . . . , m (1b)

Introduing Lagrange multipliers α = [α1, . . . , αm], the above constrained problem
can be expressed as:

min
w,b

max
α≥0

L (w, b,α) = 1

2
‖w‖2

2 −
m∑

i=1

αi
[
yi (w�xi + b) − 1

]
(2)

Take the derivatives with respect to w and b, and set to zero:

∂L (w, b,α)

∂w
= 0 ⇒ w =

m∑

i=1

αi yi xi (3a)

∂L (w, b,α)

∂b
= 0 ⇒

m∑

i=1

αi yi = 0 (3b)

Substituting into L (w, b,α):

L (α) =
m∑

i=1

αi − 1

2

m∑

i=1

m∑

j=1

αiα j yi y j x�
i x j (4)

Then the dual of the original SVM problem is also a convex quadratic problem:

max
α

m∑

i=1

αi − 1

2

m∑

i=1

m∑

j=1

αiα j yi y j x�
i x j (5a)

s.t.
m∑

i=1

αi yi = 0, αi ≥ 0, i = 1, . . . , m (5b)
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Since only the αi corresponding to support vectors can be nonzero, this dramatically
simplifies solving the dual problem.

The above is in the case that the two classes are linearly separable. When they
are not, mislabeled samples need to be allowed where soft margin SVM arises. Soft
margin SVM introduces non-negative slack variables ξi to measure the distance of
within-margine or misclassified data xi to the hyperplane with the correct label, and
ξi = max{0, 1 − yi (w�xi + b)}. When 0 < ξi < 1, the data is within margine but
correctly classified; when ξi > 1, the data is misclassified. The objective function
is then adding a term that penalizes these slack variables, and the optimization is a
trade off between a large margin and a small error penalty. The soft margin SVM
formulation with L1 regularization [64] is:

min
w,b,ξi

1

2
‖w‖2

2 + C
m∑

i=1

ξi (6a)

s.t. yi (w�xi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (6b)

where C is a trade-off parameter.
Similarly, the Lagrange of the soft margin SVM is:

min
w,b,ξ

max
α,β≥0

L (w, b, ξ ,α,β) = 1

2
‖w‖2

2 + C
m∑

i=1

ξi

−
m∑

i=1

αi
[
yi (w�xi + b) − 1 + ξi

] −
m∑

i=1

βiξi (7)

Take the derivative with respect to ξi and set to zero:

∂L (w, b, ξ ,α,β)

∂ξi
= 0 ⇒ C − αi − βi = 0 (8)

Then αi = C − βi . Since βi ≥ 0, it indicates that αi ≤ C .
The derivatives with respect to w and b are the same as before, substituting into

L (w, b, ξ ,α,β) and get the dual of the soft margin SVM:

max
α

m∑

i=1

αi − 1

2

m∑

i=1

m∑

j=1

αiα j yi y j x�
i x j (9a)

s.t.
m∑

i=1

αi yi = 0, 0 ≤ αi ≤ C, i = 1, . . . , m (9b)

The only difference is that the dual variables αi now have upper bounds C . The
advantage of the L1 regularization (linear penalty function) is that in the dual problem,
the slack variables ξi vanish and the constant C is just an additional constraint on the
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Lagrange multipliers αi . Because of this nice property and its huge impact in practice,
L1 is the most widely used regularization term.

Besides the linear kernel k(xi , x j ) = x�
i x j , nonlinear kernels are also introduced

into SVM to create nonlinear classifiers. The maximum-margin hyperplane is con-
structed in a high-dimensional transformed fearture space with a possible nonlin-
ear transformation, therefore, it could be nonlinear in the original feature space.
A widely used nonliear kernel is the Gaussian radial basis function k(xi , x j ) =
exp

( − γ ‖xi − x j‖2
2

)
. It corresponds to a Hilbert space of infinite dimensions.

3 SVM with Uncertainties

Given m training data points in R
n , use Xi = [Xi1, . . . , Xin]� ∈ R

n, i = 1, . . . , m to
denote the uncertain training data points and yi ∈ {+1,−1}, i = 1, . . . , m to denote
the respective class labels. The soft margin SVM with uncertainty is as following:

min
w,b,ξi

1

2
‖w‖2

2 + C
m∑

i=1

ξi (10a)

s.t. yi (w� Xi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (10b)

When the training data points Xi are random vectors, the model needs to be modified
to consider the uncertainties. The simplest model is to just employ the means of the
uncertain data points, μi = E[Xi ]. The formulation would become:

min
w,b,ξi

1

2
‖w‖2

2 + C
m∑

i=1

ξi (11a)

s.t. yi (w�μi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (11b)

The above model is equivalent to a soft margin SVM on data points fixed on the
means, therefore does not take into account the uncertainties of the data. Bi and Zhang
[53] assumed the data points are subject to an additive noise, Xi = x̄i + �xi and the
noise is bounded by ‖�xi‖2 ≤ δi . Then they proposed the model as:

min
w,b,ξi

1

2
‖w‖2

2 + C
m∑

i=1

ξi (12a)

s.t. yi (w�(x̄i + �xi ) + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (12b)

‖�xi‖2 ≤ δi , i = 1, . . . , m (12c)

In this model, the uncertain data Xi is free in the circle centered at x̄i with radius
equal to δi , i.e., Xi could move toward any direction in the uncertainty set. A drawback
of this model is that it cannot guarantee a generally good performance on the uncer-
tainty set since the direction of how the data points are perturbed is not constrained in
this model. It is highly possible and already presented in this paper that a data point
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with a perturbation making it move far away from the separation hyperplane could be
used as the support vector. Then considering the original uncertainty set of this data
point, it would be mostly lie within the margin and the constraint would not be satisfied
any more. To guarantee a better performance under most conditions or with higher
probability, robust optimization is introduced to solve the SVM with uncertainty.

3.1 Robust SVM with Bounded Uncertainty

Robust optimization is to guarantee an optimal performance under the worst case
scenario. Given different information of the uncertain data, several models have been
proposed. Trafalis et al. [54–58] proposed a model when the perturbation of the uncer-
tain data is bounded by norm. The uncertain data could be expressed as Xi = x̄i +σ i ,
the mean vector x̄i plus the additional perturbation σ i which is bounded by the L p

norm with ‖σ i‖p ≤ ηi , for all i = 1, . . . , m. Robust optimization is to deal with the
worst case perturbation, and this would be:

min‖σ i ‖p≤ηi
yi (w�x̄i + b) + yi w�σ i ≥ 1 − ξi , i = 1, . . . , m (13)

To solve the robust SVM, the following subproblem needs to be solved first:

min
σ i

yi w�σ i (14a)

s.t. ‖σ i‖p ≤ ηi (14b)

Hölder’s inequality says that for a pair of dual norms L p and Lq with p, q ∈ [1,∞]
and 1/p + 1/q = 1, the following inequality holds:

‖ f g‖1 ≤ ‖ f ‖p‖g‖q (15)

Therefore

|yi w�σ i | ≤ ‖σ i‖p‖w‖q ≤ ηi‖w‖q (16)

A lower bound of yi w�σ i is −ηi‖w‖q , substituting into the original problem will get
the following formulation:

min
w,b,ξi

1

2
‖w‖2

2 + C
m∑

i=1

ξi (17a)

s.t. yi (w�x̄i + b) − ηi‖w‖q ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (17b)

The above formulation depends on the norm L p . When p = q = 2, a conic program
of the above formulation can be obtained:
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min
w,b,ξi

1

2
‖w‖2

2 + C
m∑

i=1

ξi (18a)

s.t. yi (w�x̄i + b) − ηi‖w‖2 ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (18b)

An interesting property of the norm transformation is that for L1 and L∞ norms,

with the objective function
1

2
‖w‖q + C

∑m
i=1 ξi , the problem can be transformed into

a linear programming (LP) problem.
The dual of L1 norm is L∞ norm. When p = 1, the formulation becomes:

min
w,b,ξi

1

2
‖w‖∞ + C

m∑

i=1

ξi (19a)

s.t. yi (w�x̄i + b) − ηi‖w‖∞ ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (19b)

Introducing an auxiliary variable α = ‖w‖∞, then the above formulation can be
written as a LP problem:

min
w,b,ξi

1

2
α + C

m∑

i=1

ξi (20a)

s.t. yi (w�x̄i + b) − ηiα ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (20b)

α ≥ −w j , α ≥ w j , j = 1, . . . , n (20c)

When the L∞ norm is chosen to express the perturbation, then the formulation
becomes:

min
w,b,ξi

1

2
‖w‖1 + C

m∑

i=1

ξi (21a)

s.t. yi (w�x̄i + b) − ηi‖w‖1 ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (21b)

Introducing an auxiliary vector α with α j = |w j |, the resulting optimization problem
is also LP:

min
w,b,ξi

1

2

n∑

j=1

α j + C
m∑

i=1

ξi (22a)

s.t. yi (w�x̄i + b) − ηi

n∑

j=1

α j ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (22b)

α j ≥ −w j , α j ≥ w j , j = 1, . . . , n (22c)

Ghaoui et al. [59] derived a robust model when the uncertainty is expressed as
intervals (also known as support or extremum values). Suppose the extremum values of
the uncertain data points are known as li j ≤ Xi j ≤ ui j , then each training data point Xi
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is lying in a hyper-rectangle Ri = {xi = [xi1, . . . , xin]� ∈ R
n | li j ≤ xi j ≤ ui j , j =

1, . . . , n} and the robust optimization requires that all points in the hyper-rectangle
should satisfy yi (w�xi + b) ≥ 1 − ξi ,∀xi ∈ Ri . The geometric center of the hyper-
rectangle Ri is ci = [ci1, . . . , cin]� ∈ R

n where ci j = (li j + ui j )/2, j = 1, . . . , n.
The semi-lengths of the sides of the hyper-rectangle Ri is si j = (ui j − li j )/2, j =
1, . . . , n. Then the worst case with these interval information would be:

yi (w�ci + b) ≥ 1 − ξi +
n∑

j=1

si j |w j | (23)

Then the SVM model with support information can be written as:

min
w,b,ξi

1

2
‖w‖2

2 + C
m∑

i=1

ξi (24a)

s.t. yi (w�ci + b) ≥ 1 − ξi + ||Si w||1, ξi ≥ 0, i = 1, . . . , m (24b)

where Si is a diagonal matrix with entries si j .
The interval uncertainty is a special case of polyhedral uncertainty [60]. The poly-

hedral uncertainty can be expressed as Di xi ≤ di , where the matrix Di ∈ R
q×n and

the vector di ∈ R
q . And since zero vectors could be added to obatin the same number

q of inequalities for all data points, q is the largest dimension of the uncerainties of
all the points. The robust SVM with polyhedral uncertainty is:

min
w,b,ξi

1

2
‖w‖2

2 + C
m∑

i=1

ξi (25a)

s.t. min{xi :Di xi ≤di }
yi (w�xi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , m (25b)

Since min{xi :Di xi ≤di } yi (w�xi + b) ≥ 1 − ξi is equivalent to:

max{xi :Di xi ≤di }
(−yi w�xi ) − yi b ≤ −1 + ξi (26)

To solve

max − yi w�xi (27a)

s.t. Di xi ≤ di (27b)

The dual is:

min d�
i zi (28a)

s.t. D�
i zi = −yi w (28b)

zi = (zi1, . . . , ziq)� ≥ 0 (28c)

123



Ann. Data. Sci. (2014) 1(3–4):293–309 301

Strong duality would guarantee that the objevtive values of the dual and primal are
equal. Therefore, the robust SVM with polyhedral uncertainty formulation is equiva-
lent to:

min
w,b,ξi ,z

1

2
‖w‖2

2 + C
m∑

i=1

ξi (29a)

s.t. d�
i zi − yi b ≤ −1 + ξi , ξi ≥ 0 (29b)

D�
i zi + yi w = 0, zi = (zi1, . . . , ziq)� (29c)

zi j ≥ 0, i = 1, . . . , m, j = 1, . . . , q (29d)

The authors also proved that for the hard margin SVM (i.e., when there is no ξi ),
the dual of the above formulation is:

min
λ,μ

m∑

i=1

λi − 1

2

n∑

k=1

(
m∑

i=1

yiμik

)2

(30a)

s.t. λi di j +
n∑

k=1

μik Di jk = 0, i = 1, . . . , m, j = 1, . . . , q (30b)

m∑

i=1

λi yi = 0 (30c)

λi ≥ 0, i = 1, . . . , m (30d)

The interval uncertainty [x0
i −δi , x0

i +δi ] is a special case of polyhedral uncertainty
since when defining

Di =
(

I
−I

)
, di =

(
x0

i + δi

−x0
i + δi

)
(31)

{xi : xi ∈ [x0
i − δi , x0

i + δi ]} and {xi : Di xi ≤ di } are equivalent. The authors of [60]
also proposed probabilistic bounds on constraint violation in this case.

3.2 Chance Constrained SVM through Robust Optimization

The chance-constrained program (CCP) is used to ensure the small probability of
misclassification for the uncertain data. The chance-constrained SVM formulation is:

min
w,b,ξi

1

2
‖w‖2

2 + C
m∑

i=1

ξi (32a)

s.t. Prob
{

yi (w� Xi + b) ≤ 1 − ξi

}
≤ ε, ξi ≥ 0, i = 1, . . . , m (32b)
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where 0 < ε ≤ 1 is a prameter given by the user and close to 0. This model ensures
an upper bound on the misclassification probability, but the chance constraints are
typically non-convex so the problem is very hard to solve.

The work so far to deal with the chance constraint is to transform them by different
bounding inequalities. When the mean and covariance matrix are known, the multi-
variate Chebyshev bound via robust optimization can be used to express the chance
constraints above [61,62].

Markov’s inequality states that if X is a nonnegative random variable and a > 0,
then

Prob{X ≥ a} ≤ E[X ]
a

(33)

Consider the random variable
(
X − E[X ])2. Since Var(X) = E

[
(X − E[X ])2

]
, then

Prob{(X − E[X ])2 ≥ a2} ≤ Var(X)

a2 (34)

which yields the Chebyshev’s inequality

Prob{∣∣X − E[X ]∣∣ ≥ a} ≤ Var(X)

a2 (35)

Let x ∼ (μ,�) denote the random vector x with mean μ and convariance matrix
�. The multivariate Chebyshev inequality [65,66] states that for an arbitrary closed
convex set S, the supremum of the probability that x takes a value in S is

sup
x∼(μ,�)

Prob{x ∈ S} = 1

1 + d2 (36a)

d2 = inf
x∈S

(x − μ)��−1(x − μ) (36b)

For the constraint Prob{w�x + b ≤ 0} ≤ ε, it could be derived that:

w�μ + b ≥ κC ||� 1
2 w||2 (37)

where κC = √
(1 − ε)/ε.

Applying the above result to the chance constrained SVM, the Chebyshev based
reformulation utilizing the means μi and covariance matrix �i of each uncertain
training point Xi can be obtained as the following robust model [61,62]:

min
w,b,ξi

1

2
‖w‖2

2 + C
m∑

i=1

ξi (38a)

s.t. yi (w�μi + b) ≥ 1 − ξi + κC ||�
1
2
i w||2, ξi ≥ 0, i = 1, . . . , m (38b)
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Another approach to study SVM with chance constraints is to use Bernstein approx-
imation schemes [67–69]. Ben-Tal et al. [63] employed Bernstein bounding schemes
for the CCP relaxation and transformed the problem as a convex second order cone pro-
gram with robust set constraints to guarantee the satisfaction of the chance constraints
and can be solved efficiently using interior point solvers.

The Bernstein based relaxation utilized both the support (bounds, i.e. extremum
values of the data points) and moment information (mean and variance). For random
data point Xi = [Xi1, . . . , Xin]� and its label yi , support information is the bounds
of the data points li j ≤ Xi j ≤ ui j , i.e. Xi ∈ Ri = {xi = [xi1, . . . , xin]� ∈ R

n | li j ≤
xi j ≤ ui j , j = 1, . . . , n}, 1st moment information is the bounds on the means of
the data points μ−

i = [μ−
i1, . . . , μ

−
in]� ≤ μi = E[Xi ] = [E[Xi1], . . . , E[Xin]]� ≤

μ+
i = [μ+

i1, . . . , μ
+
in]�, and 2nd moment information is the bounds on the second-

moments of the data points 0 ≤ E[X2
i j ] ≤ σ 2

i j .
The Bernstein based relaxation is to derive convex constraints so that when these

convex constraints are satisfied then the chance-constraints are guaranteed to be satis-
fied. They proved that with the information of independent random variable Xi j , i.e.
support li j ≤ Xi j ≤ ui j , bounds on the first-moment μ−

i j ≤ μi j = E[Xi j ] ≤ μ+
i j , and

bounds on the second-moment 0 ≤ E[X2
i j ] ≤ σ 2

i j , the chance-constraint in SVM is
satisfied if the following convex constraint holds:

1 − ξi − yi b +
∑

j

(
max

[−yiμ
−
i jw j ,−yiμ

+
i jw j

]) + κB ||�i w||2 ≤ 0 (39)

where κB = √
2 log(1/ε), and the diagonal matrix

�i = diag
(

si1ν(μ−
i1, μ

+
i1, σi1), . . . , sinν(μ−

in, μ+
in, σin)

)
(40)

where si j = ui j −li j
2 and the function ν(μ−

i j , μ
+
i j , σi j ) is defined by normalizing X̂i j =

Xi j −ci j
si j

, where ci j = li j +ui j
2 and si j = ui j −li j

2 . Using the information of Xi j , one can

easily compute the moment information of X̂i j , which are denoted by μ̂−
i j ≤ μ̂i j =

E[X̂i j ] ≤ μ̂+
i j and 0 ≤ E[X̂2

i j ] ≤ σ̂ 2
i j . They proved that

E
[
exp{t̃ X̂ i j }

]
≤ gμ̂i j ,σ̂i j (t̃) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1−μ̂i j )
2 exp

{
t̃
μ̂i j −σ̂2

i j
1−μ̂i j

}
+

(
σ̂ 2

i j −μ̂2
i j

)
exp{t̃}

1−2μ̂i j + σ̂ 2
i j

, t̃ ≥ 0

(1+μ̂i j )
2 exp

{
t̃
μ̂i j +σ̂2

i j
1+μ̂i j

}
+

(
σ̂ 2

i j −μ̂2
i j

)
exp{−t̃}

1+2μ̂i j + σ̂ 2
i j

, t̃ ≤ 0

(41)

They defined hμ̂i j ,σ̂i j (t̃) = log gμ̂i j ,σ̂i j (t̃), and the function ν(μ−, μ+, σ ) is defined
as:
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ν(μ−, μ+, σ ) = min
{

k ≥ 0 : hμ̂,σ̂ (t̃) ≤ max[μ̂− t̃, μ̂+ t̃] + k2

2
t̃2,

∀μ̂ ∈ [μ̂−, μ̂+], t̃
}

(42)

This value can be calculated numerically. Under the condition that μ−
i j ≤ ci j ≤ μ+

i j ,

this value can be computed analytically by ν(μ−, μ+, σ ) = √
1 − (μ̂min)2, where

μ̂min = min(−μ̂−, μ̂+).
Replacing the chance-constraints in SVM by the convex constraint derived above,

the problem is transformed into a convex second order cone program:

min
w,b,ξi ,zi j

1

2
‖w‖2

2 + C
m∑

i=1

ξi (43a)

s.t. 1 − ξi − yi b +
∑

j

zi j + κB ||�i w||2 ≤ 0 (43b)

zi j ≥ −yiμ
−
i jw j , zi j ≥ −yiμ

+
i jw j (43c)

ξi ≥ 0, i = 1, . . . , m (43d)

which can be solved efficiently using cone programming solvers.
The geometrical interpretation of this convex constraint is that yi (w�x+b) ≥ 1−ξi

is satisfied for all x belonging to the union of ellipsoids E
(
μi , κB�i

) = {
x = μi +

κB�i a : ||a||2 ≤ 1
}

with center μi , shape and size κB�i , and the union is over
μi ∈ [μ−

i , μ+
i ], i.e.,

yi (w�x + b) ≥ 1 − ξi , ∀x ∈ ∪μi ∈[μ−
i ,μ+

i ]E
(
μi , κB�i

)
(44)

Therefore, this constraint is defining an uncertainty set ∪μi ∈[μ−
i ,μ+

i ]E
(
μi , κB�i

)
for

each uncertain training data point Xi . If all the points in the uncertainty set satisfy
yi (w�x + b) ≥ 1 − ξi , then the chance-constraint is guaranteed to be satisfied. This
transforms the CCP into a robust optimization problem over the uncertainty set.

Since the size of the uncertainty set depend on κB , and κB = √
2 log(1/ε), when

the upperbound of misclassification error ε decreases, the size of the uncertainty
set increases. When ε is very small, the uncertainty set would become huge so the
constraint would be too conservative. As the support information provides with the
bounding hyper-rectangle Ri where the true training data point Xi would always
lie in, a less conservative classifier can be obtained by taking the intersection of
∪μi ∈[μ−

i ,μ+
i ]E

(
μi , κB�i

)
and Ri as the new uncertainty set.

The authors proved that when the uncertainty set is the intersection, i.e.,

yi (w�x + b) ≥ 1 − ξi , ∀x ∈
(

∪μi ∈[μ−
i ,μ+

i ] E
(
μi , κB�i

)) ∩ Ri (45)
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The above constraint is satisfied if and only if the following convex constraint holds:

∑

j

(
max

[−li j (yiw j + ai j ),−ui j (yiw j + ai j )
] + max

[
μ−

i j ai j , μ
+
i j ai j

])

+1 − ξi − yi b + κB ||�i ai ||2 ≤ 0 (46)

Replacing the chance-constraints in SVM by the robust but less conservative convex
constraint above, the problem is transformed into the following SOCP:

min
w,b,ξi ,zi j ,z̃i j ,ai

1

2
‖w‖2

2 + C
m∑

i=1

ξi (47a)

s.t. 1 − ξi − yi b +
∑

j

z̃i j +
∑

j

zi j + κB ||�i ai ||2 ≤ 0 (47b)

zi j ≥ μ−
i j ai j , zi j ≥ μ+

i j ai j (47c)

z̃i j ≥ −li j (yiw j + ai j ), z̃i j ≥ −ui j (yiw j + ai j ) (47d)

ξi ≥ 0, i = 1, . . . , m (47e)

The Bernstein based formulations (43) and (47) are robust to the moment estimation
errors in addition to the uncertainty in data, since they are using the bounds on mean(
μ−

i j , μ
+
i j

)
and bounds on second-moment

(
σ 2

i j

)
instead of the exact values of the

moments which are often unknown.
Comparing the two approaches for the chance constrained SVM, both of them are

robust to uncertainties in data and did not make assumptions to the underlying prob-
ability distribution. Chebyshev based schemes only employed moment information
of the uncertain training points, while Bernstein bounds employed both support and
moment information, therefore can be less conservative than Chebyshev bounds. The
resulting classifier by Bernstein approach achieved larger classification margins and
therefore better generalization ability according to the structural risk minimization
principle of Vapnik [1]. A drawback of Bernstein based formulation is that it assumes
each element Xi j is independent with each other, while Chebyshev based formulation
allows the covariance matrix �i of uncertain training point Xi .

4 Concluding Remarks

This paper presented a survey on SVM with uncertainties. When direct model cannot
guarantee a generally good performance on the uncertainty set, robust optimization is
utilized to obtain an optimal performance under the worst case scenario. The perturba-
tion of the uncertain data could be bounded by the norm, or expressed as intervals and
polyhedrons. When the constraint is a chance constraint, different bounding schemes
like multivariate Chebyshev inequality and Bernstein bounding schemes are used to
ensure the small probability of misclassification for the uncertain data.

The models in the literature are generally processing the linear SVM. A big part of
the power of SVM lies in the powerful representation of nonlinear kernel in SVM mod-
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els, which is to generate nonlinear classification boundaries. Therefore, it is suggested
that more study could be conducted to explore how to deal with nonlinear kernels.
And more schemes could be explored to represent the robust regions of the uncertain
data and formulate the models as convex solvable problems.
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