Piecewise Linear Approximation of Bi-level Problems in Transportation

Ximing Wang
Dr. Siriphong Lawphongpanich
Dr. Yafeng Yin

University of Florida
October 8, 2013

Introduction

- Toll design problem is to determine optimal locations of tolling facilities and toll prices when there are construction costs and a budget for constructing the facilities.
- This problem can be formulated as a bi-level optimization problem.
- The decisions in the upper level determine where to toll and how much to charge
- The decisions in the lower level correspond to travelers choosing routes with the least generalized cost (time plus tolls) to reach their destinations
- In literature, the bi-level problem has been approximated using a mixed-integer program where the objective and constraints are linear.
- The equilibrium conditions are based on variational inequalities (VI)
- Need to obtain extreme points and the corresponding inequality constraints contain bilinear terms that are neither convex nor concave

Introduction

- We use two piecewise linear functions to approximate the nonlinear functions in the problem, all of which are convex.
- For each nonlinear function, one piecewise-linear function overestimates it and the other underestimates instead.
- These piecewise linear functions do not require any binary variable to implement under mild conditions.
- We ensure user equilibrium via the KKT conditions in terms of link flows.
- This makes the generation of paths or extreme points unnecessary.
- Under mild conditions, the algorithm either produces an optimal solution to the original problem after a finite number of iterations or generates a sequence of solutions that converges to an optimal one in the limit.

Congestion Pricing (CP) Problem

$$
\begin{array}{ccc}
\min _{\beta, u, v, x, \rho, \sigma, w} & \sum_{(i, j) \in \mathcal{A}} f_{i j}\left(v_{i j}\right) & \\
\text { s.t. } & 0 \leq \beta_{i j} \leq \beta_{m a x} u_{i j} & \forall(i, j) \in \mathcal{A} \\
\sum_{(i, j) \in \mathcal{A}} c_{i j} u_{i j} \leq b & \\
v_{i j}=\sum_{k \in K} x_{i j}^{k} & \forall(i, j) \in \mathcal{A} \\
A x^{k}=d_{k} E_{k}, & \forall k \in \mathcal{K} \\
s_{i j}\left(v_{i j}\right)+\beta_{i j}-\left(\rho_{i}^{k}-\rho_{j}^{k}\right)=\sigma_{i j}^{k}, & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
x_{i j}^{k} \leq d_{k} w_{i j}^{k}, & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
\sigma_{i j}^{k} \leq M\left(1-w_{i j}^{k}\right) & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
\sigma_{i j}^{k} \geq 0, & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
x_{i j}^{k} \geq 0, & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
u_{i j} \in\{0,1\} & \forall(i, j) \in \mathcal{A} \\
w_{i j}^{k} \in\{0,1\} & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
-M \leq \rho_{i}^{k} \leq 0 & \forall i \in \mathcal{N}, k \in \mathcal{K}
\end{array}
$$

- Link travel time $s_{i j}\left(v_{i j}\right)$ and aggregate link delay $f_{i j}\left(v_{i j}\right)=v_{i j} s_{i j}\left(v_{i j}\right)$
- $s_{i j}\left(v_{i j}\right)>0, s_{i j}^{\prime}\left(v_{i j}\right)>0, s_{i j}^{\prime \prime}\left(v_{i j}\right) \geq 0$
- $f_{i j}\left(v_{i j}\right)$ is strictly convex

- Lower estimate
- Cut-defining points $c_{i j}^{1}, \cdots, c_{i j}^{n_{i j}^{c}}$
- $s_{i j}\left(v_{i j}\right) \geq \max _{p \in\left\{1, \cdots, n_{i j}^{c}\right\}}\left\{s_{i j}\left(c_{i j}^{p}\right)+s_{i j}^{\prime}\left(c_{i j}^{p}\right)\left(v_{i j}-c_{i j}^{p}\right)\right\}$ by convexity
- Upper estimate
- Grid points $0=g_{i j}^{1}<g_{i j}^{2}<\cdots<g_{i j}^{n_{i j}^{g}}=d_{\mathcal{N}}$
- $s_{i j}\left(v_{i j}\right) \leq \sum_{p=1}^{n_{i j}^{g}} \lambda_{i j}^{p} s_{i j}\left(g_{i j}^{p}\right)$ for convex combination of grid points

CP Approximation

- Objective function $f_{i j}\left(v_{i j}\right)$
- Replaced with the average of the lower and upper estimates
- $\frac{1}{2}\left(\max _{p=1, \cdots, n_{i j}^{c}}\left\{f_{i j}\left(c_{i j}^{p}\right)+f_{i j}^{\prime}\left(c_{i j}^{p}\right)\left(v_{i j}-c_{i j}^{p}\right)\right\}+\sum_{p=1}^{n_{i j}^{g}} \lambda_{i j}^{p} f_{i j}\left(g_{i j}^{p}\right)\right)$
- Link travel time $s_{i j}\left(v_{i j}\right)$
- Replaced with auxiliary variable $y_{i j}$ between the lower and upper estimates
- $\max _{p=1, \cdots, n_{i j}^{c}}\left\{s_{i j}\left(c_{i j}^{p}\right)+s_{i j}^{\prime}\left(c_{i j}^{p}\right)\left(v_{i j}-c_{i j}^{p}\right)\right\} \leq y_{i j} \leq \sum_{p=1}^{n_{i j}^{g}} \lambda_{i j}^{p} s_{i j}\left(g_{i j}^{p}\right)$

ACP problem

$$
\begin{array}{cc}
\min _{\beta, u, v, x, \rho, \sigma, w, \lambda, \lambda, y} & \frac{1}{2}\left(\sum_{p=1}^{n_{i j}^{c}} z_{i j}+\sum_{p=1}^{n_{i j}^{g}} \lambda_{i j}^{p} f_{i j}\left(g_{i j}^{p}\right)\right) \\
\text { s.t. } & f_{i j}\left(c_{i j}^{p}\right)+f_{i j}^{\prime}\left(c_{i j}^{p}\right)\left(v_{i j}-c_{i j}^{p}\right) \leq z_{i j}, \\
0 \leq \beta_{i j} \leq \beta_{m a x} u_{i j} & \forall p=1, \cdots, n_{i j}^{c},(i, j) \in \mathcal{A} \\
\sum_{(i, j) \in \mathcal{A}} c_{i j} u_{i j} \leq b & \forall(i, j) \in \mathcal{A} \\
v_{i j}=\sum_{k \in K} x_{i j}^{k} & \\
v_{i j}=\sum_{p=1}^{n_{i j}^{g}} \lambda_{i j}^{p} g_{i j}^{p} & \forall(i, j) \in \mathcal{A} \\
A x^{k}=d_{k} E_{k}, & \forall(i, j) \in \mathcal{A} \\
y_{i j}+\beta_{i j}-\left(\rho_{i}^{k}-\rho_{j}^{k}\right)=\sigma_{i j}^{k}, & \forall k \in \mathcal{K} \\
s_{i j}\left(c_{i j}^{p}\right)+s_{i j}^{\prime}\left(c_{i j}^{p}\right)\left(v_{i j}-c_{i j}^{p}\right) \leq y_{i j}, & \forall p=1, \cdots, n_{i j}^{c},(i, j) \in \mathcal{A} \\
y_{i j} \leq \sum_{p=1}^{n_{i j}^{g}} \lambda_{i j}^{p} s_{i j}\left(g_{i j}^{p}\right) & \forall(i, j) \in \mathcal{A} \\
x_{i j}^{k} \leq d_{k} w_{i j}^{k}, & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
\sigma_{i j}^{k} \leq M\left(1-w_{i j}^{k}\right) & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
\sigma_{i j}^{k} \geq 0, & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
x_{i j}^{k} \geq 0, & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
u_{i j} \in\{0,1\} & \forall(i, j) \in \mathcal{A} \\
w_{i j}^{k} \in\{0,1\} & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
-M \leq \rho_{i}^{k} \leq 0 & \forall i \in \mathcal{N}, k \in \mathcal{K} \\
\sum_{p=1}^{n_{i j}^{g} \lambda_{i j}^{p}=1,} & \forall(i, j) \in \mathcal{A} \\
\lambda_{i j}^{p} \geq 0, & \forall p=1, \cdots, n_{i j}^{g},(i, j) \in \mathcal{A}
\end{array}
$$

New cut-point defining

- ACP problem is linear and contains binary variables
- Let $\hat{\pi}=(\widehat{\beta}, \widehat{u}, \hat{v}, \hat{x}, \hat{\rho}, \widehat{\sigma}, \widehat{w}, \hat{z}, \hat{\lambda}, \hat{y})$ be an optimal solution to the ACP
- The optimal link flows can be used as a new cut-defining points
- Set $c_{i j}^{n_{i j}^{c}+1}=\hat{v}_{i j}$

New grid-point finding

- When the binary variables $u_{i j}$ and $w_{i j}^{k}$ are set to $\hat{u}_{i j}$ and $\widehat{w}_{i j}^{k}$, ACP reduces to LP with $(\hat{\beta}, \hat{v}, \hat{x}, \hat{\rho}, \hat{\sigma}, \hat{z}, \hat{\lambda}, \hat{y})$ as an optimal solution
- The dual problem associated with this linear program also has a finite optimal solution
- Let $\theta_{i j}, \psi_{i j}$, and $\zeta_{i j}$, be an optimal dual variable associated with the constraints in eq. (14), (16), and (17)
- Because these dual values are optimal, the reduced costs of the current set of grid points must be nonnegative
- $f_{i j}\left(g_{i j}^{p}\right)-\theta_{i j} g_{i j}^{p}-\psi_{i j} s_{i j}\left(g_{i j}^{p}\right)+\zeta_{i j} \geq 0$

New grid-point finding

$$
\begin{array}{cc}
\min _{\beta, u, v, x, \rho, \sigma, w, \lambda, \lambda, y} & \frac{1}{2}\left(\sum_{p=1}^{n_{i j}^{c}} z_{i j}+\sum_{p=1}^{n_{i j}^{g}} \lambda_{i j}^{p} f_{i j}\left(g_{i j}^{p}\right)\right) \\
\text { s.t. } & f_{i j}\left(c_{i j}^{p}\right)+f_{i j}^{\prime}\left(c_{i j}^{p}\right)\left(v_{i j}-c_{i j}^{p}\right) \leq z_{i j}, \\
0 \leq \beta_{i j} \leq \beta_{m a x} u_{i j} & \forall p=1, \cdots, n_{i j}^{c},(i, j) \in \mathcal{A} \\
\sum_{(i, j) \in \mathcal{A}} c_{i j} u_{i j} \leq b & \forall(i, j) \in \mathcal{A} \\
v_{i j}=\sum_{k \in K} x_{i j}^{k} & \\
v_{i j}=\sum_{p=1}^{n_{i j}^{g}} \lambda_{i j}^{p} g_{i j}^{p} & \forall(i, j) \in \mathcal{A} \\
A x^{k}=d_{k} E_{k}, & \forall(i, j) \in \mathcal{A} \\
y_{i j}+\beta_{i j}-\left(\rho_{i}^{k}-\rho_{j}^{k}\right)=\sigma_{i j}^{k}, & \forall k \in \mathcal{K} \\
s_{i j}\left(c_{i j}^{p}\right)+s_{i j}^{\prime}\left(c_{i j}^{p}\right)\left(v_{i j}-c_{i j}^{p}\right) \leq y_{i j}, & \forall p=1, \cdots, n_{i j}^{c},(i, j) \in \mathcal{A} \\
y_{i j} \leq \sum_{p=1}^{n_{i j}^{g}} \lambda_{i j}^{p} s_{i j}\left(g_{i j}^{p}\right) & \forall(i, j) \in \mathcal{A} \\
x_{i j}^{k} \leq d_{k} w_{i j}^{k}, & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
\sigma_{i j}^{k} \leq M\left(1-w_{i j}^{k}\right) & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
\sigma_{i j}^{k} \geq 0, & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
x_{i j}^{k} \geq 0, & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
u_{i j} \in\{0,1\} & \forall(i, j) \in \mathcal{A} \\
w_{i j}^{k} \in\{0,1\} & \forall(i, j) \in \mathcal{A}, k \in \mathcal{K} \\
-M \leq \rho_{i}^{k} \leq 0 & \forall i \in \mathcal{N}, k \in \mathcal{K} \\
\sum_{p=1}^{n_{i j}^{g} \lambda_{i j}^{p}=1,} & \forall(i, j) \in \mathcal{A} \\
\lambda_{i j}^{p} \geq 0, & \forall p=1, \cdots, n_{i j}^{g},(i, j) \in \mathcal{A}
\end{array}
$$

$$
\psi_{i j}
$$

New grid-point finding

- Assume that a new grid point $g_{i j}^{q_{i j}^{g}+1} \neq g_{i j}^{p}, \forall p \in\left\{1, \cdots, n_{i j}^{g}\right\}_{g}$ is given, the reduced cost associate with new grid point is $r_{i j}\left(g_{i j}^{n_{i j}^{g}}\right)=f_{i j}\left(g_{i j}^{n_{i j}^{i}+1}\right)-\theta_{i j} g_{i j}^{g_{i j}+1}-\psi_{i j} s_{i j}\left(g_{i j}^{n_{i j}^{g}+1}\right)+\zeta_{i j}$.
- If $r_{i j}\left(g_{i j}^{n_{i j}^{g}+1}\right)<0$, then adding $g_{i j}^{q_{i j}^{g}+1}$ to the ACP problem and pivoting or making $\lambda_{i j}^{\eta_{i j}^{g}+1}$ basic must reduce the upper estimate of $f_{i j}(\cdot)$ in the objective of the ACP problem.
- Grid-point finding problem
- $g_{i j}^{n_{i j}^{g}+1}=\underset{0 \leq g_{i j} \leq d_{N}}{\operatorname{argmin}}\left\{f_{i j}\left(g_{i j}\right)-\theta_{i j} g_{i j}-\psi_{i j} s_{i j}\left(g_{i j}\right)+\zeta_{i j}\right\}$
- If the optimal objective value of the above problem is negative, adding the new grid point would improve the upper estimate of $f_{i j}(\cdot)$

Properties of ACP

- $v_{i j}$ is a convex combination of at most two adjacent grid points

Properties of ACP

$h(\cdot)$ is strongly quasi-convex if the following holds for all $x^{1} \neq x^{2}$

$$
h\left(\alpha x^{1}+(1-\alpha) x^{2}\right)<\max \left\{h\left(x^{1}\right), h\left(x^{2}\right)\right\}, \forall \alpha \in(0,1) .
$$

Theorem: If $r_{i j}\left(g_{i j}\right)=f_{i j}\left(g_{i j}\right)-\theta_{i j} g_{i j}-\psi_{i j} s_{i j}\left(g_{i j}\right)+\zeta_{i j}$ is strongly quasi-convex, then $\hat{v}_{i j}$ must be a convex combination of at most two adjacent grid points.

Theorem: Let $r_{i j}\left(g_{i j}\right)=f_{i j}\left(g_{i j}\right)-\theta_{i j} g_{i j}-\psi_{i j} s_{i j}\left(g_{i j}\right)+\zeta_{i j}$ be strongly quasi-convex, if $\hat{v}_{i j}=\alpha g_{i j}^{m}+(1-\alpha) g_{i j}^{m+1}$ for some $\alpha \in(0,1)$ and $m \in\left\{1, \cdots, n_{i j}^{g}\right\}$, then the optimal solution $g_{i j}^{n_{i j}^{g}+1}$ must be in the interval $\left(g^{m}, g^{m+1}\right)$.

Properties of ACP

- $r_{i j}\left(g_{i j}\right)=f_{i j}\left(g_{i j}\right)-\theta_{i j} g_{i j}-\psi_{i j} s_{i j}\left(g_{i j}\right)+\zeta_{i j}$
- Relative to $f_{i j}(\cdot), s_{i j}(\cdot)$ appears approximately linear
- When $s_{i j}(\cdot)$ is linear, the reduced cost function $r_{i j}(\cdot)$ is strictly convex

Cutting-Plane and Grid-Point (CPGP) Algorithm

Step 0: Let $g_{i j}^{p}, \forall p=1, \cdots, n_{i j}^{g}$ and $c_{i j}^{p}, \forall p=1, \cdots, n_{i j}^{c}$, be grid and cut-defining points for arc (i, j). Set $\tau=1$.

Step 1: Let $(\beta(\tau), u(\tau), v(\tau), x(\tau), \rho(\tau), \sigma(\tau), w(\tau), z(\tau), \lambda(\tau), y(\tau))$ solve the ACP problem.
Step 2: For each $(i, j) \in \mathcal{A}$, let

$$
g_{i j}(\tau)=\underset{0 \leq g_{i j} \leq d_{\mathcal{N}}}{\operatorname{argmin}}\left\{f_{i j}\left(g_{i j}\right)-\theta_{i j} g_{i j}-\psi_{i j} s_{i j}\left(g_{i j}\right)+\zeta_{i j}\right\}
$$

where (θ, ψ, ζ) denotes optimal dual variables associated with eq. (14), (16), and (17) in a linear program obtained by setting $u_{i j}=u_{i j}(\tau)$ and $w=w(\tau)$ in the ACP problem.
Set $r_{i j}\left(g_{i j}(\tau)\right)=f_{i j}\left(g_{i j}(\tau)\right)-\theta_{i j} g_{i j}(\tau)-\psi_{i j} s_{i j}\left(g_{i j}(\tau)\right)+\zeta_{i j}$.

Cutting-Plane and Grid-Point (CPGP) Algorithm

Step 3: For each $(i, j) \in \mathcal{A}$, calculate gaps in the lower estimates as follows:

$$
\begin{aligned}
& \Delta_{i j}^{f}=f_{i j}(v(\tau))-\max _{p \in\left\{1, \cdots, n_{i j}^{c}\right\}}\left\{f_{i j}\left(c_{i j}^{p}\right)+f_{i j}^{\prime}\left(c_{i j}^{p}\right)\left(v(\tau)-c_{i j}^{p}\right)\right\} \\
& \Delta_{i j}^{s}=s_{i j}(v(\tau))-\max _{p \in\left\{1, \cdots, n_{i j}^{c}\right\}}\left\{s_{i j}\left(c_{i j}^{p}\right)+s_{i j}^{\prime}\left(c_{i j}^{p}\right)\left(v(\tau)-c_{i j}^{p}\right)\right\}
\end{aligned}
$$

If $\Delta_{i j}^{f}=0, \Delta_{i j}^{S}=0$, and $r_{i j}\left(g_{i j}(\tau)\right) \geq 0, \forall(i, j) \in \mathcal{A}$, then stop and $(\beta(\tau), u(\tau), v(\tau), x(\tau), \rho(\tau), \sigma(\tau), w(\tau))$ is optimal to the CP problem. Otherwise, for each $(i, j) \in \mathcal{A}$, do the following and return to Step 1 .
a) Set $c_{i j}^{n_{i j}^{\mathrm{c}+1}}=v(\tau)$ and $n_{i j}^{c}=n_{i j}^{c}+1$, if $\Delta_{i j}^{f}>0$ or $\Delta_{i j}^{S}>0$
b) Set $g_{i j}^{n_{i j}^{g}+1}=g_{i j}(\tau)$ and $n_{i j}^{g}=n_{i j}^{g}+1$, if $r_{i j}\left(g_{i j}(\tau)\right)<0$.

Properties of CPGP Algorithm

- When the grid-point finding problem in Step 2 has a unique solution and $r_{i j}(\tau)=0$, the optimal aggregate link flow $v_{i j}(\tau)$ obtained in Step 1 equal to one of the grid points.
- When in Step 3, there is no gap and no grid point with a negative reduced cost, then the algorithm can stop because parts of the solution in Step 1 is optimal to the CP problem.

Convergence Analysis

- Let $\pi(\tau)$ denote the solution of the ACP problem in iteration τ
- $\pi(\tau)=(\beta(\tau), u(\tau), v(\tau), x(\tau), \rho(\tau), \sigma(\tau), w(\tau), z(\tau), \lambda(\tau), y(\tau))$
- Assume CPGP algorithm generates an infinite sequence $\{\pi(\tau)\}_{\tau}$
- $u(\tau)$ and $w(\tau)$ are binary vectors with finite number of elements
- There exist \ddot{u} and \ddot{w} such that $u(\tau)=\ddot{u}$ and $w(\tau)=\ddot{w}$ infinitely often
- Subset $\Omega \subset\{1,2, \cdots, \infty\}$ such that $u(\tau)=\ddot{u}$ and $w(\tau)=\ddot{w}, \forall \tau \in \Omega$
- Setting $u_{i j}=\ddot{u}$ and $w_{i j}^{k}=\ddot{w}_{i j}^{k}$ renders the ACP problem to LP
- $\Omega_{1} \subseteq \Omega$ such that $\{\pi(\tau)\}_{\tau \in \Omega_{1}}$ converges to $\ddot{\pi}=(\ddot{\beta}, \ddot{u}, \ddot{v}, \ddot{x}, \ddot{\rho}, \ddot{\sigma}, \ddot{w}, \ddot{z}, \ddot{\lambda}, \ddot{y})$
- For any Ω_{1} that yields a convergent subsequence, $\ddot{\pi}$ solves the CP problem

Numerical Experiments

- The construction cost for all toll facilities is 1
- The budget b is the maximum number of toll facilities to be constructed
- The initial number of grid points is 6
- $g_{i j}^{1}=0, g_{i j}^{2}=c a p_{i j}, g_{i j}^{3}=2 \times c a p_{i j}, g_{i j}^{4}=3 \times c a p_{i j}, g_{i j}^{5}=4 \times c a p_{i j}$
- $g_{i j}^{6}$ depends on b
- Obtain SO flow and compute the associated externalities
- Links with b largest externalities have tolls equal to their externalities
- $g_{i j}^{6}$ is the tolled UE link flow
- CPGP algorithm termination criteria
- The gaps for all underestimates relatively to their function values (link travel time and aggregate delay) and all reduced costs relative to the network delay is less than 1%

Numerical Experiments

Results from nine-node network

	CPGP			Ekstrom et al. (2012)			
Facilities	Approx.	Actual	Iter.	CPU (sec)	Actual	CPU (sec)	Scheme
$\mathbf{5}$	2252.14	2254.45	4	4	2253.92	6440	$l 9$
$\mathbf{3}$	2281.22	2281.93	4	13	2281.97	33034	110
$\mathbf{1}$	2364.91	2361.42	3	8	2361.22	249	13

Results from Sioux Falls

	CPGP				Ekstrom et al. (2012)		
Facilities	Approx.	Actual	Iter.	CPU (sec)	Actual	CPU (sec)	Scheme
$\mathbf{5}$	4312.02	4316.96	6	8196	4328.24	41216	$l 2$
$\mathbf{4}$	4336.22	4339.90	4	5222	4345.19	27930	$l 4$
$\mathbf{1}$	4418.52	4428.69	4	4001	4437.65	5488	$l 1$

Conclusions

- This talk proposes a piecewise linear approximation scheme for solving bi-level problems in transportation.
- The scheme allows a bi-level problem to be solved approximately as a linear integer program.
- The approximate solution can be further refined by adding additional linear pieces and solving the expanded linear integer program starting from a previous solution.
- Under mild conditions, the algorithm either produces an optimal solution to the original problem after a finite number of iterations or generates a sequence of solutions that converges to an optimal one in the limit.
- Numerical results show the efficiency of the algorithm.

Thank you!

