Piecewise Linear Approximation of Bi-level Problems in Transportation

Ximing Wang Dr. Siriphong Lawphongpanich Dr. Yafeng Yin

> University of Florida October 8, 2013

Introduction

- Toll design problem is to determine optimal locations of tolling facilities and toll prices when there are construction costs and a budget for constructing the facilities.
- This problem can be formulated as a bi-level optimization problem.
 - The decisions in the upper level determine where to toll and how much to charge
 - The decisions in the lower level correspond to travelers choosing routes with the least generalized cost (time plus tolls) to reach their destinations
- In literature, the bi-level problem has been approximated using a mixed-integer program where the objective and constraints are linear.
 - The equilibrium conditions are based on variational inequalities (VI)
 - Need to obtain extreme points and the corresponding inequality constraints contain bilinear terms that are neither convex nor concave

Introduction

- We use two piecewise linear functions to approximate the nonlinear functions in the problem, all of which are convex.
 - For each nonlinear function, one piecewise-linear function overestimates it and the other underestimates instead.
 - These piecewise linear functions do not require any binary variable to implement under mild conditions.
- We ensure user equilibrium via the KKT conditions in terms of link flows.
 - This makes the generation of paths or extreme points unnecessary.
- Under mild conditions, the algorithm either produces an optimal solution to the original problem after a finite number of iterations or generates a sequence of solutions that converges to an optimal one in the limit.

Congestion Pricing (CP) Problem

$\min_{\substack{\beta, u, v, x, \rho, \sigma, w}}$	$\sum_{(i,j)\in\mathcal{A}} f_{ij}(v_{ij})$		
s.t.	$0 \le \beta_{ij} \le \beta_{max} u_{ij}$	$\forall (i,j) \in \mathcal{A}$	(1)
	$\sum_{(i,j)\in\mathcal{A}} c_{ij} u_{ij} \le b$		(2)
	$v_{ij} = \sum_{k \in K} x_{ij}^k$	$\forall (i,j) \in \mathcal{A}$	(3)
	$Ax^k = d_k E_k,$	$\forall k \in \mathcal{K}$	(4)
	$s_{ij}(v_{ij}) + \beta_{ij} - (\rho_i^k - \rho_j^k) = \sigma_{ij}^k,$	$\forall (i,j) \in \mathcal{A}, k \in \mathcal{K}$	(5)
	$x_{ij}^k \le d_k w_{ij}^k$,	$\forall (i,j) \in \mathcal{A}, k \in \mathcal{K}$	(6)
	$\sigma_{ij}^k \le M(1 - w_{ij}^k)$	$\forall (i,j) \in \mathcal{A}, k \in \mathcal{K}$	(7)
	$\sigma_{ij}^k \ge 0$,	$\forall (i,j) \in \mathcal{A}, k \in \mathcal{K}$	(8)
	$x_{ij}^k \ge 0$,	$\forall (i,j) \in \mathcal{A}, k \in \mathcal{K}$	(9)
	$u_{ij} \in \{0,1\}$	$\forall (i,j) \in \mathcal{A}$	(10)
	$w_{ij}^k \in \{0,1\}$	$\forall (i,j) \in \mathcal{A}, k \in \mathcal{K}$	(11)
	$-M \le \rho_i^k \le 0$	$\forall i \in \mathcal{N}$, $k \in \mathcal{K}$	(12)

- Link travel time $s_{ij}(v_{ij})$ and aggregate link delay $f_{ij}(v_{ij}) = v_{ij}s_{ij}(v_{ij})$
 - $s_{ij}(v_{ij}) > 0, s'_{ij}(v_{ij}) > 0, s''_{ij}(v_{ij}) \ge 0$
 - $f_{ij}(v_{ij})$ is strictly convex

- Lower estimate
 - Cut-defining points $c_{ij}^1, \cdots, c_{ij}^{n_{ij}^c}$
 - $s_{ij}(v_{ij}) \ge \max_{p \in \{1, \dots, n_{ij}^c\}} \{s_{ij}(c_{ij}^p) + s'_{ij}(c_{ij}^p)(v_{ij} c_{ij}^p)\}$ by convexity
- Upper estimate
 - Grid points $0 = g_{ij}^1 < g_{ij}^2 < \dots < g_{ij}^{n_{ij}^g} = d_N$
 - $s_{ij}(v_{ij}) \leq \sum_{p=1}^{n_{ij}^g} \lambda_{ij}^p s_{ij}(g_{ij}^p)$ for convex combination of grid points

CP Approximation

• Objective function $f_{ij}(v_{ij})$

• Replaced with the average of the lower and upper estimates

•
$$\frac{1}{2} \left(\max_{p=1,\dots,n_{ij}^c} \left\{ f_{ij}(c_{ij}^p) + f'_{ij}(c_{ij}^p)(v_{ij} - c_{ij}^p) \right\} + \sum_{p=1}^{n_{ij}^g} \lambda_{ij}^p f_{ij}(g_{ij}^p) \right)$$

- Link travel time $s_{ij}(v_{ij})$
 - Replaced with auxiliary variable y_{ij} between the lower and upper estimates

•
$$\max_{p=1,\dots,n_{ij}^c} \left\{ s_{ij} \left(c_{ij}^p \right) + s_{ij}' (c_{ij}^p) (v_{ij} - c_{ij}^p) \right\} \le y_{ij} \le \sum_{p=1}^{n_{ij}^g} \lambda_{ij}^p s_{ij} \left(g_{ij}^p \right)$$

ACP problem

 $\min_{\beta,u,v,x,\rho,\sigma,w,z,\lambda,y} \quad \frac{1}{2} \left(\sum_{p=1}^{n_{ij}^c} z_{ij} + \sum_{p=1}^{n_{ij}^g} \lambda_{ij}^p f_{ij} \left(g_{ij}^p \right) \right)$ $f_{ij}(c_{ij}^p) + f_{ij}'(c_{ij}^p)(v_{ij} - c_{ij}^p) \le z_{ij}, \quad \forall p = 1, \cdots, n_{ij}^c, (i, j) \in \mathcal{A}$ s.t. (13) $0 \leq \beta_{ii} \leq \beta_{max} u_{ii}$ $\forall (i,j) \in \mathcal{A}$ $\sum_{(i,j)\in\mathcal{A}} c_{ij} u_{ij} \leq b$ $v_{ij} = \sum_{k \in K} x_{ij}^k$ $\forall (i,j) \in \mathcal{A}$ $v_{ij} = \sum_{n=1}^{n_{ij}^g} \lambda_{ij}^p g_{ij}^p$ $\forall (i, i) \in \mathcal{A}$ (14) $Ax^k = d_k E_k,$ $\forall k \in \mathcal{K}$ $y_{ij} + \beta_{ij} - (\rho_i^k - \rho_i^k) = \sigma_{ij}^k, \qquad \forall (i,j) \in \mathcal{A}, k \in \mathcal{K}$ $s_{ij}(c_{ij}^p) + s_{ij}'(c_{ij}^p)(v_{ij} - c_{ij}^p) \le y_{ij}, \quad \forall p = 1, \cdots, n_{ij}^c, (i, j) \in \mathcal{A}$ (15) $y_{ij} \leq \sum_{p=1}^{n_{ij}^g} \lambda_{ij}^p s_{ij} \left(g_{ij}^p \right)$ $\forall (i, j) \in \mathcal{A}$ (16) $x_{ii}^k \leq d_k w_{ii}^k$ $\forall (i, j) \in \mathcal{A}, k \in \mathcal{K}$ $\sigma_{ij}^k \le M(1 - w_{ij}^k)$ $\forall (i, j) \in \mathcal{A}, k \in \mathcal{K}$ $\sigma_{ii}^k \geq 0$, $\forall (i, j) \in \mathcal{A}, k \in \mathcal{K}$ $x_{ii}^k \geq 0$, $\forall (i, j) \in \mathcal{A}, k \in \mathcal{K}$ $u_{ii} \in \{0,1\}$ $\forall (i,j) \in \mathcal{A}$ $w_{ij}^k \in \{0,1\}$ $\forall (i, j) \in \mathcal{A}, k \in \mathcal{K}$ $-M \le \rho_i^k \le 0$ $\forall i \in \mathcal{N}, k \in \mathcal{K}$ $\sum_{n=1}^{n_{ij}^g} \lambda_{ij}^p = 1,$ $\forall (i, j) \in \mathcal{A}$ (17) $\lambda_{ii}^p \geq 0$, $\forall p = 1, \cdots, n_{i,i}^g, (i, j) \in \mathcal{A}$ (18)

New cut-point defining

- ACP problem is linear and contains binary variables
 - Let $\widehat{\pi} = (\widehat{\beta}, \widehat{u}, \widehat{v}, \widehat{x}, \widehat{\rho}, \widehat{\sigma}, \widehat{w}, \widehat{z}, \widehat{\lambda}, \widehat{y})$ be an optimal solution to the ACP
- The optimal link flows can be used as a new cut-defining points
 Set c_{ij}^{n_{ij}^c+1} = v_{ij}

New grid-point finding

- When the binary variables u_{ij} and w_{ij}^k are set to \hat{u}_{ij} and \hat{w}_{ij}^k , ACP reduces to LP with $(\hat{\beta}, \hat{v}, \hat{x}, \hat{\rho}, \hat{\sigma}, \hat{z}, \hat{\lambda}, \hat{y})$ as an optimal solution
 - The dual problem associated with this linear program also has a finite optimal solution
 - Let θ_{ij} , ψ_{ij} , and ζ_{ij} be an optimal dual variable associated with the constraints in eq. (14), (16), and (17)
 - Because these dual values are optimal, the reduced costs of the current set of grid points must be nonnegative

•
$$f_{ij}(g_{ij}^p) - \theta_{ij}g_{ij}^p - \psi_{ij}s_{ij}(g_{ij}^p) + \zeta_{ij} \ge 0$$

New grid-point finding

 $\min_{\beta,u,v,x,\rho,\sigma,w,z,\lambda,y} \quad \frac{1}{2} \left(\sum_{p=1}^{n_{ij}^c} z_{ij} + \sum_{p=1}^{n_{ij}^g} \lambda_{ij}^p f_{ij}(g_{ij}^p) \right)$ $f_{ij}(c_{ij}^p) + f_{ij}'(c_{ij}^p)(v_{ij} - c_{ij}^p) \le z_{ij}, \quad \forall p = 1, \cdots, n_{ij}^c, (i, j) \in \mathcal{A}$ s.t. (13) $0 \leq \beta_{ii} \leq \beta_{max} u_{ii}$ $\forall (i, j) \in \mathcal{A}$ $\sum_{(i,i)\in\mathcal{A}} c_{ij} u_{ij} \leq b$ $v_{ij} = \sum_{k \in K} x_{ij}^k$ $\forall (i,j) \in \mathcal{A}$ $v_{ij} = \sum_{n=1}^{n_{ij}^g} \lambda_{ij}^p g_{ij}^p$ $\forall (i, j) \in \mathcal{A}$ (14) $Ax^k = d_k E_k,$ $\forall k \in \mathcal{K}$ $y_{ij} + \beta_{ij} - (\rho_i^k - \rho_i^k) = \sigma_{ij}^k, \qquad \forall (i,j) \in \mathcal{A}, k \in \mathcal{K}$ $s_{ij}(c_{ij}^p) + s_{ij}'(c_{ij}^p)(v_{ij} - c_{ij}^p) \le y_{ij}, \quad \forall p = 1, \cdots, n_{ij}^c, (i, j) \in \mathcal{A}$ (15) $y_{ij} \leq \sum_{n=1}^{n_{ij}^g} \lambda_{ij}^p s_{ij} \left(g_{ij}^p \right)$ $\forall (i, j) \in \mathcal{A}$ (16) $x_{ii}^k \leq d_k w_{ii}^k$ $\forall (i,j) \in \mathcal{A}, k \in \mathcal{K}$ $\sigma_{ij}^k \le M(1 - w_{ij}^k)$ $\forall (i, j) \in \mathcal{A}, k \in \mathcal{K}$ $\sigma_{ii}^k \geq 0$, $\forall (i, j) \in \mathcal{A}, k \in \mathcal{K}$ $x_{ii}^k \geq 0$, $\forall (i, j) \in \mathcal{A}, k \in \mathcal{K}$ $u_{ii} \in \{0,1\}$ $\forall (i, j) \in \mathcal{A}$ $w_{ii}^k \in \{0,1\}$ $\forall (i, j) \in \mathcal{A}, k \in \mathcal{K}$ $-M \leq \rho_i^k \leq 0$ $\forall i \in \mathcal{N}, k \in \mathcal{K}$ $\sum_{n=1}^{n_{ij}^g} \lambda_{ij}^p = 1,$ $\forall (i, j) \in \mathcal{A}$ (17) $\lambda_{ii}^p \geq 0$, $\forall p = 1, \cdots, n_{ij}^g, (i, j) \in \mathcal{A}$ (18)

 θ_{ii}

 ψ_{ij}

ζij

New grid-point finding

- Assume that a new grid point $g_{ij}^{n_{ij}^g+1} \neq g_{ij}^p, \forall p \in \{1, \dots, n_{ij}^g\}$ is given, the reduced cost associate with new grid point is $r_{ij}\left(g_{ij}^{n_{ij}^g+1}\right) = f_{ij}\left(g_{ij}^{n_{ij}^g+1}\right) \theta_{ij}g_{ij}^{n_{ij}^g+1} \psi_{ij}s_{ij}\left(g_{ij}^{n_{ij}^g+1}\right) + \zeta_{ij}$.
- If $r_{ij}\left(g_{ij}^{n_{ij}^g+1}\right) < 0$, then adding $g_{ij}^{n_{ij}^g+1}$ to the ACP problem and pivoting or making $\lambda_{ij}^{n_{ij}^g+1}$ basic must reduce the upper estimate of $f_{ij}(\cdot)$ in the objective of the ACP problem.

Grid-point finding problem

•
$$g_{ij}^{n_{ij}^{g}+1} = \underset{0 \le g_{ij} \le d_{\mathcal{N}}}{\operatorname{argmin}} \{ f_{ij}(g_{ij}) - \theta_{ij}g_{ij} - \psi_{ij}s_{ij}(g_{ij}) + \zeta_{ij} \}$$

• If the optimal objective value of the above problem is negative, adding the new grid point would improve the upper estimate of $f_{ij}(\cdot)$

Properties of ACP

• v_{ij} is a convex combination of at most two adjacent grid points

Properties of ACP

 $h(\cdot)$ is strongly quasi-convex if the following holds for all $x^1 \neq x^2$ $h(\alpha x^1 + (1 - \alpha)x^2) < \max\{h(x^1), h(x^2)\}, \forall \alpha \in (0, 1).$

Theorem: If $r_{ij}(g_{ij}) = f_{ij}(g_{ij}) - \theta_{ij}g_{ij} - \psi_{ij}s_{ij}(g_{ij}) + \zeta_{ij}$ is strongly quasi-convex, then \hat{v}_{ij} must be a convex combination of at most two adjacent grid points.

Theorem: Let $r_{ij}(g_{ij}) = f_{ij}(g_{ij}) - \theta_{ij}g_{ij} - \psi_{ij}s_{ij}(g_{ij}) + \zeta_{ij}$ be strongly quasi-convex, if $\hat{v}_{ij} = \alpha g_{ij}^m + (1 - \alpha)g_{ij}^{m+1}$ for some $\alpha \in (0,1)$ and $m \in \{1, \dots, n_{ij}^g\}$, then the optimal solution $g_{ij}^{n_{ij}^g+1}$ must be in the interval (g^m, g^{m+1}) .

Properties of ACP

- $r_{ij}(g_{ij}) = f_{ij}(g_{ij}) \theta_{ij}g_{ij} \psi_{ij}s_{ij}(g_{ij}) + \zeta_{ij}$
- Relative to $f_{ij}(\cdot)$, $s_{ij}(\cdot)$ appears approximately linear
- When $s_{ij}(\cdot)$ is linear, the reduced cost function $r_{ij}(\cdot)$ is strictly convex

Cutting-Plane and Grid-Point (CPGP) Algorithm

<u>Step 0</u>: Let g_{ij}^p , $\forall p = 1, \dots, n_{ij}^g$ and c_{ij}^p , $\forall p = 1, \dots, n_{ij}^c$, be grid and cut-defining points for arc (i, j). Set $\tau = 1$.

<u>Step 1</u>: Let $(\beta(\tau), u(\tau), v(\tau), x(\tau), \rho(\tau), \sigma(\tau), w(\tau), z(\tau), \lambda(\tau), y(\tau))$ solve the ACP problem.

<u>Step 2</u>: For each $(i, j) \in \mathcal{A}$, let

$$g_{ij}(\tau) = \underset{0 \le g_{ij} \le d_{\mathcal{N}}}{\operatorname{argmin}} \left\{ f_{ij}(g_{ij}) - \theta_{ij}g_{ij} - \psi_{ij}s_{ij}(g_{ij}) + \zeta_{ij} \right\}$$

where (θ, ψ, ζ) denotes optimal dual variables associated with eq. (14), (16), and (17) in a linear program obtained by setting $u_{ij} = u_{ij}(\tau)$ and $w = w(\tau)$ in the ACP problem.

Set
$$r_{ij}(g_{ij}(\tau)) = f_{ij}\left(g_{ij}(\tau)\right) - \theta_{ij}g_{ij}(\tau) - \psi_{ij}s_{ij}\left(g_{ij}(\tau)\right) + \zeta_{ij}.$$

Cutting-Plane and Grid-Point (CPGP) Algorithm

<u>Step 3</u>: For each $(i, j) \in \mathcal{A}$, calculate gaps in the lower estimates as follows:

$$\Delta_{ij}^{f} = f_{ij}(v(\tau)) - \max_{p \in \{1, \dots, n_{ij}^{c}\}} \{f_{ij}(c_{ij}^{p}) + f_{ij}'(c_{ij}^{p})(v(\tau) - c_{ij}^{p})\}$$

$$\Delta_{ij}^{s} = s_{ij}(v(\tau)) - \max_{p \in \{1, \dots, n_{ij}^{c}\}} \{s_{ij}(c_{ij}^{p}) + s_{ij}'(c_{ij}^{p})(v(\tau) - c_{ij}^{p})\}$$

If $\Delta_{ij}^{f} = 0, \Delta_{ij}^{s} = 0$, and $r_{ij}(g_{ij}(\tau)) \ge 0, \forall (i,j) \in \mathcal{A}$, then stop and $(\beta(\tau), u(\tau), v(\tau), x(\tau), \rho(\tau), \sigma(\tau), w(\tau))$ is optimal to the CP problem. Otherwise, for each $(i, j) \in \mathcal{A}$, do the following and return to Step 1.

a) Set
$$c_{ij}^{n_{ij}^c+1} = v(\tau)$$
 and $n_{ij}^c = n_{ij}^c + 1$, if $\Delta_{ij}^f > 0$ or $\Delta_{ij}^s > 0$
b) Set $g_{ij}^{n_{ij}^g+1} = g_{ij}(\tau)$ and $n_{ij}^g = n_{ij}^g + 1$, if $r_{ij}(g_{ij}(\tau)) < 0$.

Properties of CPGP Algorithm

- When the grid-point finding problem in Step 2 has a unique solution and $r_{ij}(\tau) = 0$, the optimal aggregate link flow $v_{ij}(\tau)$ obtained in Step 1 equal to one of the grid points.
- When in Step 3, there is no gap and no grid point with a negative reduced cost, then the algorithm can stop because parts of the solution in Step 1 is optimal to the CP problem.

Convergence Analysis

- Let $\pi(\tau)$ denote the solution of the ACP problem in iteration τ
 - $\pi(\tau) = (\beta(\tau), u(\tau), v(\tau), x(\tau), \rho(\tau), \sigma(\tau), w(\tau), z(\tau), \lambda(\tau), y(\tau))$
- Assume CPGP algorithm generates an infinite sequence $\{\pi(\tau)\}_{\tau}$
 - $u(\tau)$ and $w(\tau)$ are binary vectors with finite number of elements
 - There exist \ddot{u} and \ddot{w} such that $u(\tau) = \ddot{u}$ and $w(\tau) = \ddot{w}$ infinitely often
 - Subset $\Omega \subset \{1, 2, \dots, \infty\}$ such that $u(\tau) = \ddot{u}$ and $w(\tau) = \ddot{w}, \forall \tau \in \Omega$
 - Setting $u_{ij} = \ddot{u}$ and $w_{ij}^k = \ddot{w}_{ij}^k$ renders the ACP problem to LP
- $\Omega_1 \subseteq \Omega$ such that $\{\pi(\tau)\}_{\tau \in \Omega_1}$ converges to $\ddot{\pi} = (\ddot{\beta}, \ddot{u}, \ddot{v}, \ddot{x}, \ddot{\rho}, \ddot{\sigma}, \ddot{w}, \ddot{z}, \ddot{\lambda}, \ddot{y})$
 - For any Ω_1 that yields a convergent subsequence, $\ddot{\pi}$ solves the CP problem

Numerical Experiments

- The construction cost for all toll facilities is 1
 - The budget *b* is the maximum number of toll facilities to be constructed
- The initial number of grid points is 6

•
$$g_{ij}^1 = 0, g_{ij}^2 = cap_{ij}, g_{ij}^3 = 2 \times cap_{ij}, g_{ij}^4 = 3 \times cap_{ij}, g_{ij}^5 = 4 \times cap_{ij}$$

- g_{ij}^6 depends on b
 - Obtain SO flow and compute the associated externalities
 - Links with *b* largest externalities have tolls equal to their externalities
 - g_{ij}^6 is the tolled UE link flow
- CPGP algorithm termination criteria
 - The gaps for all underestimates relatively to their function values (link travel time and aggregate delay) and all reduced costs relative to the network delay is less than 1%

Numerical Experiments

Results from nine-node network

	CPGP				Ekstrom et al. (2012)		
Facilities	Approx.	Actual	Iter.	CPU (sec)	Actual	CPU (sec)	Scheme
5	2252.14	2254.45	4	4	2253.92	6440	19
3	2281.22	2281.93	4	13	2281.97	33034	<i>l</i> 10
1	2364.91	2361.42	3	8	2361.22	249	13

Results from Sioux Falls

	CPGP				Ekstrom et al. (2012)		
Facilities	Approx.	Actual	Iter.	CPU (sec)	Actual	CPU (sec)	Scheme
5	4312.02	4316.96	6	8196	4328.24	41216	<i>l</i> 2
4	4336.22	4339.90	4	5222	4345.19	27930	<i>l</i> 4
1	4418.52	4428.69	4	4001	4437.65	5488	<i>l</i> 1

Conclusions

- This talk proposes a piecewise linear approximation scheme for solving bi-level problems in transportation.
- The scheme allows a bi-level problem to be solved approximately as a linear integer program.
- The approximate solution can be further refined by adding additional linear pieces and solving the expanded linear integer program starting from a previous solution.
- Under mild conditions, the algorithm either produces an optimal solution to the original problem after a finite number of iterations or generates a sequence of solutions that converges to an optimal one in the limit.
- Numerical results show the efficiency of the algorithm.

Thank you!