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Introduction 
 

 Toll design problem is to determine optimal locations of tolling facilities and toll 
prices when there are construction costs and a budget for constructing the facilities.  

 

 This problem can be formulated as a bi-level optimization problem. 

 The decisions in the upper level determine where to toll and how much to charge  

 The decisions in the lower level correspond to travelers choosing routes with the least 
generalized cost (time plus tolls) to reach their destinations 

 

 In literature, the bi-level problem has been approximated using a mixed-integer 
program where the objective and constraints are linear. 

 The equilibrium conditions are based on variational inequalities (VI) 

 Need to obtain extreme points and the corresponding inequality constraints contain 
bilinear terms that are neither convex nor concave  



Introduction 
 

 We use two piecewise linear functions to approximate the nonlinear 
functions in the problem, all of which are convex.  

 For each nonlinear function, one piecewise-linear function overestimates it 
and the other underestimates instead.  

 These piecewise linear functions do not require any binary variable to 
implement under mild conditions.  

 

 We ensure user equilibrium via the KKT conditions in terms of link flows.  

 This makes the generation of paths or extreme points unnecessary.  

 

 Under mild conditions, the algorithm either produces an optimal solution to 
the original problem after a finite number of iterations or generates a 
sequence of solutions that converges to an optimal one in the limit.  



Congestion Pricing (CP) Problem 



min
𝛽,𝑢,𝑣,𝑥,𝜌,𝜎,𝑤

 𝑓𝑖𝑗(𝑣𝑖𝑗)𝑖,𝑗 ∈𝒜

s.t. 0 ≤ 𝛽𝑖𝑗 ≤ 𝛽𝑚𝑎𝑥𝑢𝑖𝑗 ∀ 𝑖, 𝑗 ∈ 𝒜 (1)

 𝑐𝑖𝑗𝑢𝑖𝑗𝑖,𝑗 ∈𝒜 ≤ 𝑏 (2)

𝑣𝑖𝑗 =  𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ∀ 𝑖, 𝑗 ∈ 𝒜 (3)

𝐴𝑥𝑘 = 𝑑𝑘𝐸𝑘 , ∀𝑘 ∈ 𝒦 (4)

𝑠𝑖𝑗 𝑣𝑖𝑗 + 𝛽𝑖𝑗 − (𝜌𝑖
𝑘−𝜌𝑗

𝑘) = 𝜎𝑖𝑗
𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (5)

𝑥𝑖𝑗
𝑘 ≤ 𝑑𝑘𝑤𝑖𝑗

𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (6)

𝜎𝑖𝑗
𝑘 ≤ 𝑀(1 − 𝑤𝑖𝑗

𝑘 ) ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (7)

𝜎𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (8)

𝑥𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (9)

𝑢𝑖𝑗 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜 (10)

𝑤𝑖𝑗
𝑘 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (11)

−𝑀 ≤ 𝜌𝑖
𝑘 ≤ 0 ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦 (12)

 

 

 

 Link travel time 𝑠𝑖𝑗(𝑣𝑖𝑗) and aggregate link delay 𝑓𝑖𝑗 𝑣𝑖𝑗 = 𝑣𝑖𝑗𝑠𝑖𝑗(𝑣𝑖𝑗)  

 𝑠𝑖𝑗 𝑣𝑖𝑗 > 0, 𝑠𝑖𝑗
′ 𝑣𝑖𝑗 > 0, 𝑠𝑖𝑗

″ 𝑣𝑖𝑗 ≥ 0 

 𝑓𝑖𝑗(𝑣𝑖𝑗) is strictly convex  



 Lower estimate 

 Cut-defining points 𝑐𝑖𝑗
1 , ⋯ , 𝑐

𝑖𝑗

𝑛𝑖𝑗
𝑐

 

 𝑠𝑖𝑗 𝑣𝑖𝑗 ≥ max
𝑝∈ 1,⋯,𝑛𝑖𝑗

𝑐
𝑠𝑖𝑗 𝑐𝑖𝑗

𝑝
+ 𝑠𝑖𝑗

′ 𝑐𝑖𝑗
𝑝

𝑣𝑖𝑗 − 𝑐𝑖𝑗
𝑝

 by convexity 

 Upper estimate 

 Grid points 0 = 𝑔𝑖𝑗
1 < 𝑔𝑖𝑗

2 < ⋯ < 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔

= 𝑑𝒩 

 𝑠𝑖𝑗 𝑣𝑖𝑗 ≤  𝜆𝑖𝑗
𝑝
𝑠𝑖𝑗(𝑔𝑖𝑗

𝑝
)

𝑛𝑖𝑗
𝑔

𝑝=1  for convex combination of grid points 

s(v) 

Upper estimate 

Lower estimate 

c2 c3 g1 g2 g3 c1 



CP Approximation 
 

 Objective function 𝑓𝑖𝑗(𝑣𝑖𝑗) 

 Replaced with the average of the lower and upper estimates 


1

2
max

𝑝=1,⋯,𝑛𝑖𝑗
𝑐
 𝑓𝑖𝑗 𝑐𝑖𝑗

𝑝
+ 𝑓𝑖𝑗

′ (𝑐𝑖𝑗
𝑝
)(𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
) +  𝜆𝑖𝑗

𝑝
𝑓𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1  

 

 Link travel time 𝑠𝑖𝑗 𝑣𝑖𝑗  

 Replaced with auxiliary variable 𝑦𝑖𝑗 between the lower and upper estimates 

 max
𝑝=1,⋯,𝑛𝑖𝑗

𝑐
 𝑠𝑖𝑗 𝑐𝑖𝑗

𝑝
+ 𝑠𝑖𝑗

′ (𝑐𝑖𝑗
𝑝
)(𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
) ≤ 𝑦𝑖𝑗 ≤  𝜆𝑖𝑗

𝑝
𝑠𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1  

 



ACP problem 



min
𝛽,𝑢,𝑣,𝑥,𝜌,𝜎,𝑤,𝑧,𝜆,𝑦

1

2
 𝑧𝑖𝑗
𝑛𝑖𝑗
𝑐

𝑝=1 +  𝜆𝑖𝑗
𝑝
𝑓𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1

s.t. 𝑓𝑖𝑗 𝑐𝑖𝑗
𝑝

+ 𝑓𝑖𝑗
′ 𝑐𝑖𝑗

𝑝
𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
≤ 𝑧𝑖𝑗 , ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑐 , 𝑖, 𝑗 ∈ 𝒜 (13)

0 ≤ 𝛽𝑖𝑗 ≤ 𝛽𝑚𝑎𝑥𝑢𝑖𝑗 ∀ 𝑖, 𝑗 ∈ 𝒜

 𝑐𝑖𝑗𝑢𝑖𝑗𝑖,𝑗 ∈𝒜 ≤ 𝑏

𝑣𝑖𝑗 =  𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ∀ 𝑖, 𝑗 ∈ 𝒜

𝑣𝑖𝑗 =  𝜆𝑖𝑗
𝑝
𝑔𝑖𝑗
𝑝𝑛𝑖𝑗

𝑔

𝑝=1 ∀ 𝑖, 𝑗 ∈ 𝒜 (14)

𝐴𝑥𝑘 = 𝑑𝑘𝐸𝑘, ∀𝑘 ∈ 𝒦

𝑦𝑖𝑗 + 𝛽𝑖𝑗 − (𝜌𝑖
𝑘−𝜌𝑗

𝑘) = 𝜎𝑖𝑗
𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑠𝑖𝑗 𝑐𝑖𝑗
𝑝

+ 𝑠𝑖𝑗
′ 𝑐𝑖𝑗

𝑝
𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
≤ 𝑦𝑖𝑗 , ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑐 , 𝑖, 𝑗 ∈ 𝒜 (15)

𝑦𝑖𝑗 ≤  𝜆𝑖𝑗
𝑝
𝑠𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1 ∀ 𝑖, 𝑗 ∈ 𝒜 (16)

𝑥𝑖𝑗
𝑘 ≤ 𝑑𝑘𝑤𝑖𝑗

𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝜎𝑖𝑗
𝑘 ≤ 𝑀(1 − 𝑤𝑖𝑗

𝑘 ) ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝜎𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑥𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑢𝑖𝑗 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜

𝑤𝑖𝑗
𝑘 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

−𝑀 ≤ 𝜌𝑖
𝑘 ≤ 0 ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦

 𝜆𝑖𝑗
𝑝𝑛𝑖𝑗

𝑔

𝑝=1 = 1, ∀ 𝑖, 𝑗 ∈ 𝒜 (17)

𝜆𝑖𝑗
𝑝
≥ 0, ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑔
, 𝑖, 𝑗 ∈ 𝒜 (18)

 

 



 New cut-point defining 
 

 ACP problem is linear and contains binary variables 

 Let 𝜋 = 𝛽 , 𝑢 , 𝑣 , 𝑥 , 𝜌 , 𝜎 , 𝑤 , 𝑧 , 𝜆 , 𝑦  be an optimal solution to the ACP 

 

 The optimal link flows can be used as a new cut-defining points 

 Set 𝑐𝑖𝑗
𝑛𝑖𝑗
𝑐+1

= 𝑣 𝑖𝑗 

 



New grid-point finding 
 

 When the binary variables 𝑢𝑖𝑗 and 𝑤𝑖𝑗
𝑘  are set to 𝑢 𝑖𝑗 and 𝑤 𝑖𝑗

𝑘 , ACP reduces to LP 

with 𝛽 , 𝑣 , 𝑥 , 𝜌 , 𝜎 , 𝑧 , 𝜆 , 𝑦  as an optimal solution 

 

 The dual problem associated with this linear program also has a finite 
optimal solution 

 

 Let 𝜃𝑖𝑗 , 𝜓𝑖𝑗 ,  and 𝜁𝑖𝑗 be an optimal dual variable associated with the 

constraints in eq. (14), (16), and (17) 

 

 Because these dual values are optimal, the reduced costs of the current set of 
grid points must be nonnegative 

 𝑓𝑖𝑗 𝑔𝑖𝑗
𝑝

− 𝜃𝑖𝑗𝑔𝑖𝑗
𝑝
− 𝜓𝑖𝑗𝑠𝑖𝑗 𝑔𝑖𝑗

𝑝
+ 𝜁𝑖𝑗 ≥ 0 

 



New grid-point finding 



min
𝛽,𝑢,𝑣,𝑥,𝜌,𝜎,𝑤,𝑧,𝜆,𝑦

1

2
 𝑧𝑖𝑗
𝑛𝑖𝑗
𝑐

𝑝=1 +  𝜆𝑖𝑗
𝑝
𝑓𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1

s.t. 𝑓𝑖𝑗 𝑐𝑖𝑗
𝑝

+ 𝑓𝑖𝑗
′ 𝑐𝑖𝑗

𝑝
𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
≤ 𝑧𝑖𝑗 , ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑐 , 𝑖, 𝑗 ∈ 𝒜 (13)

0 ≤ 𝛽𝑖𝑗 ≤ 𝛽𝑚𝑎𝑥𝑢𝑖𝑗 ∀ 𝑖, 𝑗 ∈ 𝒜

 𝑐𝑖𝑗𝑢𝑖𝑗𝑖,𝑗 ∈𝒜 ≤ 𝑏

𝑣𝑖𝑗 =  𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ∀ 𝑖, 𝑗 ∈ 𝒜

𝑣𝑖𝑗 =  𝜆𝑖𝑗
𝑝
𝑔𝑖𝑗
𝑝𝑛𝑖𝑗

𝑔

𝑝=1 ∀ 𝑖, 𝑗 ∈ 𝒜 (14)

𝐴𝑥𝑘 = 𝑑𝑘𝐸𝑘, ∀𝑘 ∈ 𝒦

𝑦𝑖𝑗 + 𝛽𝑖𝑗 − (𝜌𝑖
𝑘−𝜌𝑗

𝑘) = 𝜎𝑖𝑗
𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑠𝑖𝑗 𝑐𝑖𝑗
𝑝

+ 𝑠𝑖𝑗
′ 𝑐𝑖𝑗

𝑝
𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
≤ 𝑦𝑖𝑗 , ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑐 , 𝑖, 𝑗 ∈ 𝒜 (15)

𝑦𝑖𝑗 ≤  𝜆𝑖𝑗
𝑝
𝑠𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1 ∀ 𝑖, 𝑗 ∈ 𝒜 (16)

𝑥𝑖𝑗
𝑘 ≤ 𝑑𝑘𝑤𝑖𝑗

𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝜎𝑖𝑗
𝑘 ≤ 𝑀(1 − 𝑤𝑖𝑗

𝑘 ) ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝜎𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑥𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑢𝑖𝑗 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜

𝑤𝑖𝑗
𝑘 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

−𝑀 ≤ 𝜌𝑖
𝑘 ≤ 0 ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦

 𝜆𝑖𝑗
𝑝𝑛𝑖𝑗

𝑔

𝑝=1 = 1, ∀ 𝑖, 𝑗 ∈ 𝒜 (17)

𝜆𝑖𝑗
𝑝
≥ 0, ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑔
, 𝑖, 𝑗 ∈ 𝒜 (18)

 

 

𝜃𝑖𝑗  

𝜓𝑖𝑗  

𝜁𝑖𝑗  



New grid-point finding 
 

 Assume that a new grid point 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

≠ 𝑔𝑖𝑗
𝑝
, ∀𝑝 ∈ {1,⋯ , 𝑛𝑖𝑗

𝑔
} is given, the reduced cost 

associate with new grid point is 𝑟𝑖𝑗 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

= 𝑓𝑖𝑗 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

− 𝜃𝑖𝑗𝑔𝑖𝑗
𝑛𝑖𝑗
𝑔
+1

− 𝜓𝑖𝑗𝑠𝑖𝑗 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

+ 𝜁𝑖𝑗 . 

 

 If 𝑟𝑖𝑗 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

< 0, then adding 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

 to the ACP problem and pivoting or making 𝜆
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

 

basic must reduce the upper estimate of 𝑓𝑖𝑗(⋅) in the objective of the ACP problem.  

 

 

 Grid-point finding problem 

 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

= argmin
0≤𝑔𝑖𝑗≤𝑑𝒩

𝑓𝑖𝑗 𝑔𝑖𝑗 − 𝜃𝑖𝑗𝑔𝑖𝑗 − 𝜓𝑖𝑗𝑠𝑖𝑗 𝑔𝑖𝑗 + 𝜁𝑖𝑗  

 If the optimal objective value of the above problem is negative, adding the new grid point would 
improve the upper estimate of 𝑓𝑖𝑗(⋅) 
 



Properties of ACP 
 

 𝑣𝑖𝑗 is a convex combination of at most two adjacent grid points 

𝑔𝑖𝑗
1  𝑔𝑖𝑗

3  𝑔𝑖𝑗
2  𝑔𝑖𝑗

4  𝑣 

𝛼 𝑓𝑖𝑗 𝑔𝑖𝑗
2 + (1 − 𝛼 )𝑓𝑖𝑗 𝑔𝑖𝑗

4  

𝛼𝑓𝑖𝑗 𝑔𝑖𝑗
2 + (1 − 𝛼)𝑓𝑖𝑗 𝑔𝑖𝑗

3  

  



Properties of ACP 



Properties of ACP 
 𝑟𝑖𝑗 𝑔𝑖𝑗 = 𝑓𝑖𝑗 𝑔𝑖𝑗 − 𝜃𝑖𝑗𝑔𝑖𝑗 − 𝜓𝑖𝑗𝑠𝑖𝑗 𝑔𝑖𝑗 + 𝜁𝑖𝑗 

 Relative to 𝑓𝑖𝑗(⋅), 𝑠𝑖𝑗(⋅) appears approximately linear 

 When 𝑠𝑖𝑗(⋅) is linear, the reduced cost function 𝑟𝑖𝑗(⋅) is strictly convex 
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Cutting-Plane and Grid-Point (CPGP) Algorithm 



Cutting-Plane and Grid-Point (CPGP) Algorithm 



Properties of CPGP Algorithm  
 

 When the grid-point finding problem in Step 2 has a unique solution and 

𝑟𝑖𝑗 𝜏 = 0, the optimal aggregate link flow 𝑣𝑖𝑗(𝜏) obtained in Step 1 equal 

to one of the grid points. 

 

 When in Step 3, there is no gap and no grid point with a negative reduced 

cost, then the algorithm can stop because parts of the solution in Step 1 is 

optimal to the CP problem. 



Convergence Analysis 
 

 Let 𝜋(𝜏) denote the solution of the ACP problem in iteration 𝜏 

 𝜋 𝜏 = 𝛽 𝜏 , 𝑢 𝜏 , 𝑣 𝜏 , 𝑥 𝜏 , 𝜌 𝜏 , 𝜎 𝜏 , 𝑤 𝜏 , 𝑧 𝜏 , 𝜆 𝜏 , 𝑦 𝜏  

 

 Assume CPGP algorithm generates an infinite sequence 𝜋 𝜏 𝜏 

 𝑢 𝜏  and 𝑤(𝜏) are binary vectors with finite number of elements 

 There exist 𝑢  and 𝑤  such that 𝑢 𝜏 = 𝑢  and 𝑤 𝜏 = 𝑤  infinitely often 

 Subset Ω ⊂ {1, 2,⋯ ,∞} such that 𝑢 𝜏 = 𝑢  and 𝑤 𝜏 = 𝑤 , ∀𝜏 ∈ Ω 

 Setting 𝑢𝑖𝑗 = 𝑢  and 𝑤𝑖𝑗
𝑘 = 𝑤 𝑖𝑗

𝑘  renders the ACP problem to LP 

 

 Ω1 ⊆ Ω such that 𝜋 𝜏 𝜏∈Ω1
 converges to 𝜋 = 𝛽 , 𝑢 , 𝑣 , 𝑥 , 𝜌 , 𝜎 , 𝑤 , 𝑧 , 𝜆 , 𝑦  

 For any Ω1 that yields a convergent subsequence, 𝜋  solves the CP problem 



Numerical Experiments 
 

 The construction cost for all toll facilities is 1 

 The budget 𝑏 is the maximum number of toll facilities to be constructed 

 

 The initial number of grid points is 6 

 𝑔𝑖𝑗
1 = 0, 𝑔𝑖𝑗

2 = 𝑐𝑎𝑝𝑖𝑗 , 𝑔𝑖𝑗
3 = 2 × 𝑐𝑎𝑝𝑖𝑗 , 𝑔𝑖𝑗

4 = 3 × 𝑐𝑎𝑝𝑖𝑗 , 𝑔𝑖𝑗
5 = 4 × 𝑐𝑎𝑝𝑖𝑗  

 𝑔𝑖𝑗
6  depends on 𝑏 

 Obtain SO flow and compute the associated externalities 

 Links with 𝑏 largest externalities have tolls equal to their externalities 

 𝑔𝑖𝑗
6  is the tolled UE link flow 

 

 CPGP algorithm termination criteria 

 The gaps for all underestimates relatively to their function values (link travel 
time and aggregate delay) and all reduced costs relative to the network delay 
is less than 1% 



Numerical Experiments 

CPGP Ekstrom et al. (2012) 

Facilities Approx. Actual Iter. CPU (sec) Actual CPU (sec) Scheme 

5 2252.14 2254.45 4 4 2253.92 6440 l9 

3 2281.22 2281.93 4 13 2281.97 33034 l10 

1 2364.91 2361.42 3 8 2361.22 249 l3 

Results from nine-node network 

CPGP Ekstrom et al. (2012) 

Facilities Approx. Actual Iter. CPU (sec) Actual CPU (sec) Scheme 

5 4312.02 4316.96 6 8196 4328.24 41216 l2 

4 4336.22 4339.90 4 5222 4345.19 27930 l4 

1 4418.52 4428.69 4 4001 4437.65 5488 l1 

Results from Sioux Falls 



Conclusions 
 

 This talk proposes a piecewise linear approximation scheme for solving bi-level 
problems in transportation.  

 

 The scheme allows a bi-level problem to be solved approximately as a linear integer 
program.  

 

 The approximate solution can be further refined by adding additional linear pieces 
and solving the expanded linear integer program starting from a previous solution. 

 

 Under mild conditions, the algorithm either produces an optimal solution to the 
original problem after a finite number of iterations or generates a sequence of 
solutions that converges to an optimal one in the limit.  

 

 Numerical results show the efficiency of the algorithm. 



Thank you! 


