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Introduction 
 

 Toll design problem is to determine optimal locations of tolling facilities and toll 
prices when there are construction costs and a budget for constructing the facilities.  

 

 This problem can be formulated as a bi-level optimization problem. 

 The decisions in the upper level determine where to toll and how much to charge  

 The decisions in the lower level correspond to travelers choosing routes with the least 
generalized cost (time plus tolls) to reach their destinations 

 

 In literature, the bi-level problem has been approximated using a mixed-integer 
program where the objective and constraints are linear. 

 The equilibrium conditions are based on variational inequalities (VI) 

 Need to obtain extreme points and the corresponding inequality constraints contain 
bilinear terms that are neither convex nor concave  



Introduction 
 

 We use two piecewise linear functions to approximate the nonlinear 
functions in the problem, all of which are convex.  

 For each nonlinear function, one piecewise-linear function overestimates it 
and the other underestimates instead.  

 These piecewise linear functions do not require any binary variable to 
implement under mild conditions.  

 

 We ensure user equilibrium via the KKT conditions in terms of link flows.  

 This makes the generation of paths or extreme points unnecessary.  

 

 Under mild conditions, the algorithm either produces an optimal solution to 
the original problem after a finite number of iterations or generates a 
sequence of solutions that converges to an optimal one in the limit.  



Congestion Pricing (CP) Problem 



min
𝛽,𝑢,𝑣,𝑥,𝜌,𝜎,𝑤

 𝑓𝑖𝑗(𝑣𝑖𝑗)𝑖,𝑗 ∈𝒜

s.t. 0 ≤ 𝛽𝑖𝑗 ≤ 𝛽𝑚𝑎𝑥𝑢𝑖𝑗 ∀ 𝑖, 𝑗 ∈ 𝒜 (1)

 𝑐𝑖𝑗𝑢𝑖𝑗𝑖,𝑗 ∈𝒜 ≤ 𝑏 (2)

𝑣𝑖𝑗 =  𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ∀ 𝑖, 𝑗 ∈ 𝒜 (3)

𝐴𝑥𝑘 = 𝑑𝑘𝐸𝑘 , ∀𝑘 ∈ 𝒦 (4)

𝑠𝑖𝑗 𝑣𝑖𝑗 + 𝛽𝑖𝑗 − (𝜌𝑖
𝑘−𝜌𝑗

𝑘) = 𝜎𝑖𝑗
𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (5)

𝑥𝑖𝑗
𝑘 ≤ 𝑑𝑘𝑤𝑖𝑗

𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (6)

𝜎𝑖𝑗
𝑘 ≤ 𝑀(1 − 𝑤𝑖𝑗

𝑘 ) ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (7)

𝜎𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (8)

𝑥𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (9)

𝑢𝑖𝑗 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜 (10)

𝑤𝑖𝑗
𝑘 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦 (11)

−𝑀 ≤ 𝜌𝑖
𝑘 ≤ 0 ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦 (12)

 

 

 

 Link travel time 𝑠𝑖𝑗(𝑣𝑖𝑗) and aggregate link delay 𝑓𝑖𝑗 𝑣𝑖𝑗 = 𝑣𝑖𝑗𝑠𝑖𝑗(𝑣𝑖𝑗)  

 𝑠𝑖𝑗 𝑣𝑖𝑗 > 0, 𝑠𝑖𝑗
′ 𝑣𝑖𝑗 > 0, 𝑠𝑖𝑗

″ 𝑣𝑖𝑗 ≥ 0 

 𝑓𝑖𝑗(𝑣𝑖𝑗) is strictly convex  



 Lower estimate 

 Cut-defining points 𝑐𝑖𝑗
1 , ⋯ , 𝑐

𝑖𝑗

𝑛𝑖𝑗
𝑐

 

 𝑠𝑖𝑗 𝑣𝑖𝑗 ≥ max
𝑝∈ 1,⋯,𝑛𝑖𝑗

𝑐
𝑠𝑖𝑗 𝑐𝑖𝑗

𝑝
+ 𝑠𝑖𝑗

′ 𝑐𝑖𝑗
𝑝

𝑣𝑖𝑗 − 𝑐𝑖𝑗
𝑝

 by convexity 

 Upper estimate 

 Grid points 0 = 𝑔𝑖𝑗
1 < 𝑔𝑖𝑗

2 < ⋯ < 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔

= 𝑑𝒩 

 𝑠𝑖𝑗 𝑣𝑖𝑗 ≤  𝜆𝑖𝑗
𝑝
𝑠𝑖𝑗(𝑔𝑖𝑗

𝑝
)

𝑛𝑖𝑗
𝑔

𝑝=1  for convex combination of grid points 

s(v) 

Upper estimate 

Lower estimate 

c2 c3 g1 g2 g3 c1 



CP Approximation 
 

 Objective function 𝑓𝑖𝑗(𝑣𝑖𝑗) 

 Replaced with the average of the lower and upper estimates 


1

2
max

𝑝=1,⋯,𝑛𝑖𝑗
𝑐
 𝑓𝑖𝑗 𝑐𝑖𝑗

𝑝
+ 𝑓𝑖𝑗

′ (𝑐𝑖𝑗
𝑝
)(𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
) +  𝜆𝑖𝑗

𝑝
𝑓𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1  

 

 Link travel time 𝑠𝑖𝑗 𝑣𝑖𝑗  

 Replaced with auxiliary variable 𝑦𝑖𝑗 between the lower and upper estimates 

 max
𝑝=1,⋯,𝑛𝑖𝑗

𝑐
 𝑠𝑖𝑗 𝑐𝑖𝑗

𝑝
+ 𝑠𝑖𝑗

′ (𝑐𝑖𝑗
𝑝
)(𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
) ≤ 𝑦𝑖𝑗 ≤  𝜆𝑖𝑗

𝑝
𝑠𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1  

 



ACP problem 



min
𝛽,𝑢,𝑣,𝑥,𝜌,𝜎,𝑤,𝑧,𝜆,𝑦

1

2
 𝑧𝑖𝑗
𝑛𝑖𝑗
𝑐

𝑝=1 +  𝜆𝑖𝑗
𝑝
𝑓𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1

s.t. 𝑓𝑖𝑗 𝑐𝑖𝑗
𝑝

+ 𝑓𝑖𝑗
′ 𝑐𝑖𝑗

𝑝
𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
≤ 𝑧𝑖𝑗 , ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑐 , 𝑖, 𝑗 ∈ 𝒜 (13)

0 ≤ 𝛽𝑖𝑗 ≤ 𝛽𝑚𝑎𝑥𝑢𝑖𝑗 ∀ 𝑖, 𝑗 ∈ 𝒜

 𝑐𝑖𝑗𝑢𝑖𝑗𝑖,𝑗 ∈𝒜 ≤ 𝑏

𝑣𝑖𝑗 =  𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ∀ 𝑖, 𝑗 ∈ 𝒜

𝑣𝑖𝑗 =  𝜆𝑖𝑗
𝑝
𝑔𝑖𝑗
𝑝𝑛𝑖𝑗

𝑔

𝑝=1 ∀ 𝑖, 𝑗 ∈ 𝒜 (14)

𝐴𝑥𝑘 = 𝑑𝑘𝐸𝑘, ∀𝑘 ∈ 𝒦

𝑦𝑖𝑗 + 𝛽𝑖𝑗 − (𝜌𝑖
𝑘−𝜌𝑗

𝑘) = 𝜎𝑖𝑗
𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑠𝑖𝑗 𝑐𝑖𝑗
𝑝

+ 𝑠𝑖𝑗
′ 𝑐𝑖𝑗

𝑝
𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
≤ 𝑦𝑖𝑗 , ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑐 , 𝑖, 𝑗 ∈ 𝒜 (15)

𝑦𝑖𝑗 ≤  𝜆𝑖𝑗
𝑝
𝑠𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1 ∀ 𝑖, 𝑗 ∈ 𝒜 (16)

𝑥𝑖𝑗
𝑘 ≤ 𝑑𝑘𝑤𝑖𝑗

𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝜎𝑖𝑗
𝑘 ≤ 𝑀(1 − 𝑤𝑖𝑗

𝑘 ) ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝜎𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑥𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑢𝑖𝑗 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜

𝑤𝑖𝑗
𝑘 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

−𝑀 ≤ 𝜌𝑖
𝑘 ≤ 0 ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦

 𝜆𝑖𝑗
𝑝𝑛𝑖𝑗

𝑔

𝑝=1 = 1, ∀ 𝑖, 𝑗 ∈ 𝒜 (17)

𝜆𝑖𝑗
𝑝
≥ 0, ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑔
, 𝑖, 𝑗 ∈ 𝒜 (18)

 

 



 New cut-point defining 
 

 ACP problem is linear and contains binary variables 

 Let 𝜋 = 𝛽 , 𝑢 , 𝑣 , 𝑥 , 𝜌 , 𝜎 , 𝑤 , 𝑧 , 𝜆 , 𝑦  be an optimal solution to the ACP 

 

 The optimal link flows can be used as a new cut-defining points 

 Set 𝑐𝑖𝑗
𝑛𝑖𝑗
𝑐+1

= 𝑣 𝑖𝑗 

 



New grid-point finding 
 

 When the binary variables 𝑢𝑖𝑗 and 𝑤𝑖𝑗
𝑘  are set to 𝑢 𝑖𝑗 and 𝑤 𝑖𝑗

𝑘 , ACP reduces to LP 

with 𝛽 , 𝑣 , 𝑥 , 𝜌 , 𝜎 , 𝑧 , 𝜆 , 𝑦  as an optimal solution 

 

 The dual problem associated with this linear program also has a finite 
optimal solution 

 

 Let 𝜃𝑖𝑗 , 𝜓𝑖𝑗 ,  and 𝜁𝑖𝑗 be an optimal dual variable associated with the 

constraints in eq. (14), (16), and (17) 

 

 Because these dual values are optimal, the reduced costs of the current set of 
grid points must be nonnegative 

 𝑓𝑖𝑗 𝑔𝑖𝑗
𝑝

− 𝜃𝑖𝑗𝑔𝑖𝑗
𝑝
− 𝜓𝑖𝑗𝑠𝑖𝑗 𝑔𝑖𝑗

𝑝
+ 𝜁𝑖𝑗 ≥ 0 

 



New grid-point finding 



min
𝛽,𝑢,𝑣,𝑥,𝜌,𝜎,𝑤,𝑧,𝜆,𝑦

1

2
 𝑧𝑖𝑗
𝑛𝑖𝑗
𝑐

𝑝=1 +  𝜆𝑖𝑗
𝑝
𝑓𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1

s.t. 𝑓𝑖𝑗 𝑐𝑖𝑗
𝑝

+ 𝑓𝑖𝑗
′ 𝑐𝑖𝑗

𝑝
𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
≤ 𝑧𝑖𝑗 , ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑐 , 𝑖, 𝑗 ∈ 𝒜 (13)

0 ≤ 𝛽𝑖𝑗 ≤ 𝛽𝑚𝑎𝑥𝑢𝑖𝑗 ∀ 𝑖, 𝑗 ∈ 𝒜

 𝑐𝑖𝑗𝑢𝑖𝑗𝑖,𝑗 ∈𝒜 ≤ 𝑏

𝑣𝑖𝑗 =  𝑥𝑖𝑗
𝑘

𝑘∈𝐾 ∀ 𝑖, 𝑗 ∈ 𝒜

𝑣𝑖𝑗 =  𝜆𝑖𝑗
𝑝
𝑔𝑖𝑗
𝑝𝑛𝑖𝑗

𝑔

𝑝=1 ∀ 𝑖, 𝑗 ∈ 𝒜 (14)

𝐴𝑥𝑘 = 𝑑𝑘𝐸𝑘, ∀𝑘 ∈ 𝒦

𝑦𝑖𝑗 + 𝛽𝑖𝑗 − (𝜌𝑖
𝑘−𝜌𝑗

𝑘) = 𝜎𝑖𝑗
𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑠𝑖𝑗 𝑐𝑖𝑗
𝑝

+ 𝑠𝑖𝑗
′ 𝑐𝑖𝑗

𝑝
𝑣𝑖𝑗 − 𝑐𝑖𝑗

𝑝
≤ 𝑦𝑖𝑗 , ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑐 , 𝑖, 𝑗 ∈ 𝒜 (15)

𝑦𝑖𝑗 ≤  𝜆𝑖𝑗
𝑝
𝑠𝑖𝑗 𝑔𝑖𝑗

𝑝𝑛𝑖𝑗
𝑔

𝑝=1 ∀ 𝑖, 𝑗 ∈ 𝒜 (16)

𝑥𝑖𝑗
𝑘 ≤ 𝑑𝑘𝑤𝑖𝑗

𝑘 , ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝜎𝑖𝑗
𝑘 ≤ 𝑀(1 − 𝑤𝑖𝑗

𝑘 ) ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝜎𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑥𝑖𝑗
𝑘 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

𝑢𝑖𝑗 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜

𝑤𝑖𝑗
𝑘 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝒜, 𝑘 ∈ 𝒦

−𝑀 ≤ 𝜌𝑖
𝑘 ≤ 0 ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒦

 𝜆𝑖𝑗
𝑝𝑛𝑖𝑗

𝑔

𝑝=1 = 1, ∀ 𝑖, 𝑗 ∈ 𝒜 (17)

𝜆𝑖𝑗
𝑝
≥ 0, ∀𝑝 = 1,⋯ , 𝑛𝑖𝑗

𝑔
, 𝑖, 𝑗 ∈ 𝒜 (18)

 

 

𝜃𝑖𝑗  

𝜓𝑖𝑗  

𝜁𝑖𝑗  



New grid-point finding 
 

 Assume that a new grid point 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

≠ 𝑔𝑖𝑗
𝑝
, ∀𝑝 ∈ {1,⋯ , 𝑛𝑖𝑗

𝑔
} is given, the reduced cost 

associate with new grid point is 𝑟𝑖𝑗 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

= 𝑓𝑖𝑗 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

− 𝜃𝑖𝑗𝑔𝑖𝑗
𝑛𝑖𝑗
𝑔
+1

− 𝜓𝑖𝑗𝑠𝑖𝑗 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

+ 𝜁𝑖𝑗 . 

 

 If 𝑟𝑖𝑗 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

< 0, then adding 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

 to the ACP problem and pivoting or making 𝜆
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

 

basic must reduce the upper estimate of 𝑓𝑖𝑗(⋅) in the objective of the ACP problem.  

 

 

 Grid-point finding problem 

 𝑔
𝑖𝑗

𝑛𝑖𝑗
𝑔
+1

= argmin
0≤𝑔𝑖𝑗≤𝑑𝒩

𝑓𝑖𝑗 𝑔𝑖𝑗 − 𝜃𝑖𝑗𝑔𝑖𝑗 − 𝜓𝑖𝑗𝑠𝑖𝑗 𝑔𝑖𝑗 + 𝜁𝑖𝑗  

 If the optimal objective value of the above problem is negative, adding the new grid point would 
improve the upper estimate of 𝑓𝑖𝑗(⋅) 
 



Properties of ACP 
 

 𝑣𝑖𝑗 is a convex combination of at most two adjacent grid points 

𝑔𝑖𝑗
1  𝑔𝑖𝑗

3  𝑔𝑖𝑗
2  𝑔𝑖𝑗

4  𝑣 

𝛼 𝑓𝑖𝑗 𝑔𝑖𝑗
2 + (1 − 𝛼 )𝑓𝑖𝑗 𝑔𝑖𝑗

4  

𝛼𝑓𝑖𝑗 𝑔𝑖𝑗
2 + (1 − 𝛼)𝑓𝑖𝑗 𝑔𝑖𝑗

3  

  



Properties of ACP 



Properties of ACP 
 𝑟𝑖𝑗 𝑔𝑖𝑗 = 𝑓𝑖𝑗 𝑔𝑖𝑗 − 𝜃𝑖𝑗𝑔𝑖𝑗 − 𝜓𝑖𝑗𝑠𝑖𝑗 𝑔𝑖𝑗 + 𝜁𝑖𝑗 

 Relative to 𝑓𝑖𝑗(⋅), 𝑠𝑖𝑗(⋅) appears approximately linear 

 When 𝑠𝑖𝑗(⋅) is linear, the reduced cost function 𝑟𝑖𝑗(⋅) is strictly convex 
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Cutting-Plane and Grid-Point (CPGP) Algorithm 



Cutting-Plane and Grid-Point (CPGP) Algorithm 



Properties of CPGP Algorithm  
 

 When the grid-point finding problem in Step 2 has a unique solution and 

𝑟𝑖𝑗 𝜏 = 0, the optimal aggregate link flow 𝑣𝑖𝑗(𝜏) obtained in Step 1 equal 

to one of the grid points. 

 

 When in Step 3, there is no gap and no grid point with a negative reduced 

cost, then the algorithm can stop because parts of the solution in Step 1 is 

optimal to the CP problem. 



Convergence Analysis 
 

 Let 𝜋(𝜏) denote the solution of the ACP problem in iteration 𝜏 

 𝜋 𝜏 = 𝛽 𝜏 , 𝑢 𝜏 , 𝑣 𝜏 , 𝑥 𝜏 , 𝜌 𝜏 , 𝜎 𝜏 , 𝑤 𝜏 , 𝑧 𝜏 , 𝜆 𝜏 , 𝑦 𝜏  

 

 Assume CPGP algorithm generates an infinite sequence 𝜋 𝜏 𝜏 

 𝑢 𝜏  and 𝑤(𝜏) are binary vectors with finite number of elements 

 There exist 𝑢  and 𝑤  such that 𝑢 𝜏 = 𝑢  and 𝑤 𝜏 = 𝑤  infinitely often 

 Subset Ω ⊂ {1, 2,⋯ ,∞} such that 𝑢 𝜏 = 𝑢  and 𝑤 𝜏 = 𝑤 , ∀𝜏 ∈ Ω 

 Setting 𝑢𝑖𝑗 = 𝑢  and 𝑤𝑖𝑗
𝑘 = 𝑤 𝑖𝑗

𝑘  renders the ACP problem to LP 

 

 Ω1 ⊆ Ω such that 𝜋 𝜏 𝜏∈Ω1
 converges to 𝜋 = 𝛽 , 𝑢 , 𝑣 , 𝑥 , 𝜌 , 𝜎 , 𝑤 , 𝑧 , 𝜆 , 𝑦  

 For any Ω1 that yields a convergent subsequence, 𝜋  solves the CP problem 



Numerical Experiments 
 

 The construction cost for all toll facilities is 1 

 The budget 𝑏 is the maximum number of toll facilities to be constructed 

 

 The initial number of grid points is 6 

 𝑔𝑖𝑗
1 = 0, 𝑔𝑖𝑗

2 = 𝑐𝑎𝑝𝑖𝑗 , 𝑔𝑖𝑗
3 = 2 × 𝑐𝑎𝑝𝑖𝑗 , 𝑔𝑖𝑗

4 = 3 × 𝑐𝑎𝑝𝑖𝑗 , 𝑔𝑖𝑗
5 = 4 × 𝑐𝑎𝑝𝑖𝑗  

 𝑔𝑖𝑗
6  depends on 𝑏 

 Obtain SO flow and compute the associated externalities 

 Links with 𝑏 largest externalities have tolls equal to their externalities 

 𝑔𝑖𝑗
6  is the tolled UE link flow 

 

 CPGP algorithm termination criteria 

 The gaps for all underestimates relatively to their function values (link travel 
time and aggregate delay) and all reduced costs relative to the network delay 
is less than 1% 



Numerical Experiments 

CPGP Ekstrom et al. (2012) 

Facilities Approx. Actual Iter. CPU (sec) Actual CPU (sec) Scheme 

5 2252.14 2254.45 4 4 2253.92 6440 l9 

3 2281.22 2281.93 4 13 2281.97 33034 l10 

1 2364.91 2361.42 3 8 2361.22 249 l3 

Results from nine-node network 

CPGP Ekstrom et al. (2012) 

Facilities Approx. Actual Iter. CPU (sec) Actual CPU (sec) Scheme 

5 4312.02 4316.96 6 8196 4328.24 41216 l2 

4 4336.22 4339.90 4 5222 4345.19 27930 l4 

1 4418.52 4428.69 4 4001 4437.65 5488 l1 

Results from Sioux Falls 



Conclusions 
 

 This talk proposes a piecewise linear approximation scheme for solving bi-level 
problems in transportation.  

 

 The scheme allows a bi-level problem to be solved approximately as a linear integer 
program.  

 

 The approximate solution can be further refined by adding additional linear pieces 
and solving the expanded linear integer program starting from a previous solution. 

 

 Under mild conditions, the algorithm either produces an optimal solution to the 
original problem after a finite number of iterations or generates a sequence of 
solutions that converges to an optimal one in the limit.  

 

 Numerical results show the efficiency of the algorithm. 



Thank you! 


