/“/

Piecewise Linear Approximation of
Bi-level Problems in Transportation




Introduction

Toll design problem is to determine optimal locations of tolling facilities and toll
prices when there are construction costs and a budget for constructing the facilities.

This problem can be formulated as a bi-level optimization problem.
e The decisions in the upper level determine where to toll and how much to charge

e The decisions in the lower level correspond to travelers choosing routes with the least
generalized cost (time plus tolls) to reach their destinations

In literature, the bi-level problem has been approximated using a mixed-integer
program where the objective and constraints are linear.

e The equilibrium conditions are based on variational inequalities (V1)

 Need to obtain extreme points and the corresponding inequality constraints contain
bilinear terms that are neither convex nor concave



Introduction

We use two piecewise linear functions to approximate the nonlinear
functions in the problem, all of which are convex.

e For each nonlinear function, one piecewise-linear function overestimates it
and the other underestimates instead.

 These piecewise linear functions do not require any binary variable to
implement under mild conditions.

We ensure user equilibrium via the KKT conditions in terms of link flows.
e This makes the generation of paths or extreme points unnecessary.

Under mild conditions, the algorithm either produces an optimal solution to
the original problem after a finite number of iterations or generates a
sequence of solutions that converges to an optimal one in the limit.



Congestion Pricing (CP) Problem

ﬁ.u,%ﬂ.a,w 2, pea fij(Wis)
s.t. O st V(i,j) € A
2 jeA Cijlij < b
Vij = Dkek X V(i,j) € A
Ax® = diEy, vk € K

sy(vy) + .Bij — (pf=p)) =af, Vi) EAkKkeEX

< del]’ V(l,]) € c/q,,k EKX
l] —M(l_ 1]) V(i,j)Ec/l,kEf]C
auzo V(i,j) E A keEXK
xuzo V(i,j) EAkeEXK
u;; € {0,1} v(i,j) €A
wfs € {0,1} V(i) € Ak €X
-M<pf<o ViEN,kEX

Link travel time s;;(v;;) and aggregate link delay f;;(v;;) = vijsij(vi))
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CP Approximation

Objective function f;;(v;;)
» Replaced with the average of the lower and upper estimates
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Link travel time s;;(v;;)
 Replaced with auxiliary variable y;; between the lower and upper estimates
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ACP problem
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New cut-point defining

ACP problem is linear and contains binary variables
o Let®# = (B,4,%p,36W,24,9) be an optimal solution to the ACP

The optimal link flows can be used as a new cut-defining points



New grid-point finding

When the binary variables u;; and Wikj are setto ;; and vAvl"]" ACP reduces to LP

with (B, 9,%, p, 8,2, 4, %) as an optimal solution

e The dual problem associated with this linear program also has a finite
optimal solution

e Let6;;,v;j, and ¢;; be an optimal dual variable associated with the
constraints in eq. (14), (16), and (17)

» Because these dual values are optimal, the reduced costs of the current set of
grid points must be nonnegative

i fij(gfj) - 9ijglpj o lpijsij(glpj) +4ij =20



New grid-point finding
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New grid-point finding

nd +1
Assume that a new grid point gl.j” £ gfj,Vp € {1, ---,nigj} is given, the reduced cost
nd. nd. nd. nd.
associate with new grid point is r; <gij”+1> = fi; <giju+1> S gij"+1 — sy ( gij”H) i
n%+1 A ng+1 . ; .
If 7y i < 0, then adding g;; 10 the ACP problem and pivoting or making A

basic must reduce the upper estimate of f;;(-) in the objective of the ACP problem.

g
nU+1
ij

Grid-point finding problem

n?+1 -
* Gy = argiin e g
sgijsay
» |f the optimal objective value of the above problem is negative, adding the new grid point would
improve the upper estimate of f;;(-)



Properties of ACP

* v;; Is a convex combination of at most two adjacent grid points

afij(9%) + 1 - f;(g8)

afij(gf;) + (1 — o) f;i(gd)

2, 3 4



Properties of ACP

h(-) is strongly quasi-convex if the following holds for all x* # x?

h(ax® + (1 — a)x?) < max{h(x!), h(x?)},Va € (0,1).

Theorem: If TIJ(QU) = fu(gu) — ngu — IPUSU(QU) + qu 1S Stl'Ol’lgly quasi—convex,

then ¥;; must be a convex combination of at most two adjacent grid points.

Theorem: Let 7;; (g[-j) = fij (gij) — 0,9 — wijsij(gij) + {;;j be strongly quasi-convex,
if v = ag;’}l + (1 - a:)g}}-‘“ for some a € (0,1) and m € {1,---,?11% s
nd.+1

then the optimal solution gl.j.” must be in the interval (g™, g™**").



Properties of ACP

* 15(9:) = fij(9i) — 61915 — Wijsi;(9i7) + 8y
* Relative to f;;(-), s;;(-) appears approximately linear

* When s;;(-) is linear, the reduced cost function r;;(-) is strictly convex
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Cutting-Plane and Grid-Point (CPGP) Algorithm

Step 0: Let gg., vp=1,--, ng. and ij, Vp = 1,--,n{;, be grid and cut-defining points for arc

(i,j).Sett =1.
Step 1: Let (ﬁ (1), u(r), v(z),x(1), p(1),0 (1), w(1), 2(1), A(7), y(r)) solve the ACP problem.

Step 2: For each (i,j) € A, let
gij(’f) = argmin {fij(gij) - 9ij.9ij - ll)ijsij(gij) + fij}

OS_gijﬁdN
where (6,1, {) denotes optimal dual variables associated with eq. (14), (16), and (17) ina

linear program obtained by setting u;; = u;;(7) and w = w() in the ACP problem.

Set 11;(g;; (1)) = f;j (gij(f)) — 69 (1) — Pyjsi; (gii(f)) +Gij-



Cutting-Plane and Grid-Point (CPGP) Algorithm

Step 3: For each (i,j) € <A, calculate gaps in the lower estimates as follows:

Af} = fij(w(1)) — {max }{fu(c )-I-fU(C )(v(r) —c; )}
peEil

A% = 51 (v() — i '_}{Su(c )+ sij(cij) (v (@ = cij)}

p
IfAf = 0,4;; = 0,and r;; (gu(r)) > 0,Y(i,j) € A, then stop and
(ﬁ (1), u(r),v(r), x(1), p(1), 0 (1), W(T)) is optimal to the CP problem. Otherwise, for
each (i,j) € A, do the following and return to Step 1.
a) Set C;”H = v(7) and nj; = nj; + 1, ifA{;. >0orAj; >0

g

nd+1 _
b)Setg;;’ = g;(7) and nigj = nf’j +1,ifry; (gi}-(r)) < 0.



Properties of CPGP Algorithm

When the grid-point finding problem in Step 2 has a unique solution and
r;; () = 0, the optimal aggregate link flow v;;(7) obtained in Step 1 equal
to one of the grid points.

When in Step 3, there is no gap and no grid point with a negative reduced
cost, then the algorithm can stop because parts of the solution in Step 1 is
optimal to the CP problem.



Convergence Analysis

Let r(7) denote the solution of the ACP problem in iteration ©
o () = (B@),u@),v(r), x(1), p(2), 6(2), w(x), z(2), A(x), (1))

Assume CPGP algorithm generates an infinite sequence {m(7)},
e u(r) and w(t) are binary vectors with finite number of elements
e There exist ii and w such that u(t) = ii and w(z) = w infinitely often
e SubsetQ c {1,2,-:-, 0} such that u(tr) = ii and w(t) = w, V1 € Q
e Setting u;; = it and w5 = W renders the ACP problem to LP

Q; € Q such that {(t)},eq, converges to it = (B, ii, ¥, %, p, &, W, %, 4, )
e For any Q, that yields a convergent subsequence, 7z solves the CP problem



Numerical Experiments

The construction cost for all toll facilities is 1
e The budget b is the maximum number of toll facilities to be constructed

The initial number of grid points is 6
o gl-lj — O,gizj = capij,g?j =2 capl-j,gfj =3 capij, gf’j = 4 X capi;j
e g{; dependson b

« Obtain SO flow and compute the associated externalities
« Links with b largest externalities have tolls equal to their externalities

- g¢; is the tolled UE link flow

CPGP algorithm termination criteria

 The gaps for all underestimates relatively to their function values (link travel
time and aggregate delay) and all reduced costs relative to the network delay
IS less than 1%



Numerical Experiments

Results from nine-node network

- CPGP Ekstrom et al. (2012)

2252.14 2254.45 2253.92 6440
3 2281.22 2281.93 4 13 2281.97 33034 110
1 2364.91 2361.42 3 8 2361.22 249 13

Results from Sioux Falls

- CPGP Ekstrom et al. (2012)

4312.02 4316.96 8196 4328.24 41216

4 4336.22 4339.90 4 5222 4345.19 27930 l4

1 4418.52 4428.69 4 4001 4437.65 5488 11



Conclusions

This talk proposes a piecewise linear approximation scheme for solving bi-level
problems in transportation.

The scheme allows a bi-level problem to be solved approximately as a linear integer
program.

The approximate solution can be further refined by adding additional linear pieces
and solving the expanded linear integer program starting from a previous solution.

Under mild conditions, the algorithm either produces an optimal solution to the
original problem after a finite number of iterations or generates a sequence of
solutions that converges to an optimal one in the limit.

Numerical results show the efficiency of the algorithm.
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