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Hard Margin SVM

Support Vector Machines (SVM) construct maximum-margin
classifiers:

A two-class dataset of m data points {xi , yi}mi=1 with
n-dimensional features xi ∈ Rn and class labels yi ∈ {±1}.
For linearly separable datasets, there exists a hyperplane
w>x + b = 0 to separate the two classes.
The width between the margin lines w>x + b = ±1 is 2

‖w‖2
2
.

Hard Margin SVM

min
w,b

1
2
‖w‖22

s.t. yi(w>xi + b) ≥ 1, i = 1, . . . ,m

Ximing Wang, Panos Pardalos SVM Classification with Robust Chance Constraints
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Soft Margin SVM

When two classes are not linearly separable:
Soft margin SVM introduces non-negative slack variables
ξi to measure the distance of data to the margin.
ξi = max{0,1− yi(w>xi + b)}
When 0 < ξi < 1, the data is within margine but correctly
classified; when ξi > 1, the data is misclassified.

Soft Margin SVM

min
w,b,ξi

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. yi(w>xi + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . ,m
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Chance-Constrained SVM

When uncertainties exist in the data points:
A two-class dataset of m uncertain training data points
x̃i ∈ Rn and corresponding labels yi ∈ {±1}.
The Chance-Constrained Program (CCP) is to ensure the
small probability of misclassification for the uncertain data.

Chance-Constrained SVM

min
w,b,ξi

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. P
{

yi(w>x̃i + b) ≤ 1− ξi

}
≤ ε, ξi ≥ 0, i = 1, . . . ,m
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Robust Chance-Constrained SVM

The exact probability distribution are often unknown:
Only some properties of the distribution could be acquired,
such as the first and second moments.
The distributionally robust or ambiguous chance constraint
is a conservative approximation of the original problem.
Let P be the set of all probability distributions that have the
known properties of P.

Robust Chance-Constrained SVM

min
w,b,ξi

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. sup
P∈P

P
{

yi(w>x̃i + b) ≤ 1− ξi

}
≤ ε, ξi ≥ 0, i = 1, . . . ,m

Ximing Wang, Panos Pardalos SVM Classification with Robust Chance Constraints
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Moments Information

Assume the first and second moment information of the
random variables x̃i are known.
For random variable x̃i , let µi = E[x̃i ] ∈ Rn be the mean
vector and Σi = E

[
(x̃i − µi)(x̃i − µi)

>] ∈ Sn be the
covariance matrix.
Combine the first and second moments Σi ,µi into one
matrix Ωi :

Ωi =

[
Σi + µiµ

>
i µi

µ>i 1

]

Let P be the set of all probability distributions that have the
same first and second moments.

Ximing Wang, Panos Pardalos SVM Classification with Robust Chance Constraints
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Theorem
RCC-SVM is equivalent to the following SDP formulation:

min
w,b,ξi ,Ni ,αi

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. αi −
1
ε

Trace(ΩiNi) ≥ 0, ξi ≥ 0

Ni � 0, Ni +

[
0 1

2yiw
1
2yiw> yib + ξi − 1− αi

]
� 0

Ximing Wang, Panos Pardalos SVM Classification with Robust Chance Constraints
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Multivariate Chebyshev Inequality

Let x̃ ∼ (µ,Σ) denote random vector x̃ with mean µ and
convariance matrix Σ.
The multivariate Chebyshev inequality states that for an
arbitrary closed convex set S, the supremum of the
probability that x̃ takes a value in S is

sup
x̃∼(µ,Σ)

P{x̃ ∈ S} =
1

1 + d2

d2 = inf
x∈S

(x− µ)>Σ−1(x− µ)

Ximing Wang, Panos Pardalos SVM Classification with Robust Chance Constraints
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For SVM constraint, the S =
{

y(w>x + b) ≤ 1− ξ
}

is a
half-space produced by a hyperplane and therefore a
closed convex set.
Using multivariate Chebyshev inequality, the SOCP
reformulation of RCC-SVM is:

min
w,b,ξi

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. yi(w>µi + b) ≥ 1− ξi +

√
1− ε
ε
||Σ

1
2
i w||2

ξi ≥ 0, i = 1, . . . ,m

Ximing Wang, Panos Pardalos SVM Classification with Robust Chance Constraints
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Geometric Interpretation of the SOCP Model

For each point xi , it is no longer a single point, but an
ellipsoid centered at µi , and shaped with the covariance
matrix Σi :

E
(
µi ,Σi

)
=
{

x = µi +

√
1− ε
ε

Σ
1
2
i a : ||a||2 ≤ 1

}
The SOCP constraint is satisfied if and only if

yi(w>xi + b) ≥ 1− ξi , ∀xi ∈ E
(
µi ,Σi

)
This transforms the RCC-SVM into a robust optimization
problem over the uncertainty set E

(
µi ,Σi

)
for each

uncertain training data point.

Ximing Wang, Panos Pardalos SVM Classification with Robust Chance Constraints
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This transforms the RCC-SVM into a robust optimization
problem over the uncertainty set E

(
µi ,Σi

)
for each

uncertain training data point.
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Synthetic Data
Wisconsin Breast Cancer Data

+1 class: 2-d normal distribution with µ+ = [1,1]>, Σ+ = I
−1 class: 2-d normal distribution with µ− = [−1,−1]>, Σ− = I
Each class has 50 points: 10 for training, 40 for test
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Wisconsin breast cancer data from UCI dataset:
444 benign(+1) class data, 239 malignant (−1) class data
9-dimensional features
Use PCA to show the first 2 principle components
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Wisconsin Breast Cancer Data Classification Result

Table : 20% training, 80% test

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.2
Test Set Accuracy 96.52% 95.24% 95.24% 95.24%

SDP Running Time 35.1723 34.0854 28.6718 28.9409
SOCP Running Time 1.6846 1.6724 1.9918 2.1012

Table : 90% training, 10% test

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.2
Test Set Accuracy 98.53% 98.53% 97.06% 97.06%

SDP Running Time 216.1927 182.9951 189.6738 164.3278
SOCP Running Time 9.3391 10.9000 12.4002 13.8963
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Conclusions

The robust chance-constrained SVM is to ensure the small
probability of misclassification for the uncertain data.

The exact probability distribution of the random variables
are unknown.
Some properties of the distribution are known, for example,
the moments information.

When the mean and covariance of the data points are
known, the RCC-SVM can be reformulated as both SDP
and SOCP models.

The SDP and SOCP models are equivalent, which could be
proved theoretically and by experiments.
The SOCP model runs more efficiently than SDP model.
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Thank You!
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