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Abstract Robust chance-constrained Support VectorMachines (SVM)with second-
order moment information can be reformulated into equivalent and tractable Semidef-
inite Programming (SDP) and Second Order Cone Programming (SOCP) models.
However, practical applications involve processing large-scale data sets. For the refor-
mulated SDP and SOCPmodels, existed solvers by primal-dual interior method do not
have enough computational efficiency. This paper studies the stochastic subgradient
descent method and algorithms to solve robust chance-constrained SVM on large-
scale data sets. Numerical experiments are performed to show the efficiency of the
proposed approaches. The result of this paper breaks the computational limitation and
expands the application of robust chance-constrained SVM.
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1 Introduction

Machine learning is the exploration of models and algorithms to learn from and
make predictions based on data. Classified into supervised and unsupervised learning
depending on the nature of data, most machine learning techniques are optimization
problems. In supervised learning, the data has both features as the attributes and labels
describing the class, and thus the learning process is to find the general rule that maps
the data features to their labels. For unsupervised learning, data labels are not given,
and the features are the only input to discover hidden patterns or structures in data.

As one of thewell-known supervised learning algorithms, Support VectorMachines
(SVM) is gaining more and more attention. It was proposed by Vapnik [22,23] as a
maximum-margin classifier. Tutorials on SVM could refer to [1,2,8,9]. It has wide
applications in many fields during recent years and also many algorithmic and mod-
eling variations [21].

Basic SVM models are dealing with the situation where the exact values of the
data points are known. When uncertainties exist in data, robust SVM, dealing with
the worst-case scenario for data with supporting sets, and chance-constrained SVM,
ensuring the small probability of misclassification for the uncertain data, are proposed
in literatures, as reviewed in [25].

Recently, robust chance-constrained SVM model was proposed to have benefits of
both robust and chance-constrained SVM [3,4,17,24]. For datawith uncertainties with
second-order moment information, it was reformulated into equivalent Semidefinite
Programming (SDP) and Second Order Cone Programming (SOCP) models [24]. The
SDP and SOCP reformulation models can be solved by conic linear programming
solvers, such as SeDuMi [18] via primal-dual interior method [14,19,20]. However,
practical problems require processing large-scale data sets, while the existed solvers
do not have enough computational efficiency.

Different solving methods have been proposed for large-scale linear SVM. The
dual coordinate descent method [12] considers the dual problem of the soft-margin
linear SVMand can obtain an ε-accuracy solution for the dual problem in O(log(1/ε))
iterations with the cost per iteration O(mn̄), where m is the number of training points
and n̄ is the average number of nonzero elements per feature. Stochastic subgradient
descent method [6,26] considers the primal soft-margin linear SVM problem. As an
application of stochastic subgradient descent method, Pegasos [16] can obtain an ε-
accuracy solution for the primal problem in Õ(1/ε) iterationswith the cost per iteration
O(n), where n is the feature dimension. To the best of our knowledge, no numerical
methods have been proposed so far to solve robust chance-constrained SVM and its
reformulations.

Depending on the specific structure of the reformulations for robust chance-
constrained SVM, this paper proposes a method based on stochastic subgradient
descent for solving robust chance-constrained SVM on large-scale data sets. We also
performnumerical experiments to show the efficiency of the proposed approaches. The
computational limitation has blocked the application of robust chance-constrained
SVM. The result of this paper breaks the limitation and expands robust chance-
constrained SVM to large-scale data sets.
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The remainder of this paper is as follows. Section 2 introduces the robust chance-
constrained SVM and its SDP and SOCP reformulations. Section 3 presents the
stochastic subgradient descent method to solve large-scale linear SVM and its appli-
cation Pegasos. The followed Sects. 4 and 5 are core sections of this paper. Section
4 proposes the approach to solve robust chance-constrained SVM on large-scale data
sets. Section 5 contains the numerical experiments of the proposed method. Finally
Sect. 6 concludes this paper.

2 Robust chance-constrained SVM and reformulations

For a two-class dataset of m data points {xi , yi }mi=1 with n-dimensional features xi ∈
R
n and respective class labels yi ∈ {+1,−1}, if they are linearly separable, there

exists a hyperplane w�x + b = 0 to separate the two classes and the corresponding
classification rule is based on sign(w�x + b). SVM constructs maximum-margin
classifiers [22,23] such that the distance between the hyperplane and the support
vectors is maximized. When the two classes are not linearly separable, soft-margin
SVM introduces non-negative slack variables ξi to allow mislabeled samples, and ξi
measures the distance of within-margin or misclassified data xi to the margin line
with the correct label with the expression ξi = max{0, 1 − yi (w�xi + b)}. When
0 < ξi < 1, the data is within margine but correctly classified; when ξi > 1, the data
is misclassified. The optimization is a trade off between a large margin and a small
error penalty. The soft margin SVM formulation [10] is:

(SVM − SoftMargin)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (1a)

s.t. yi (w�xi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . ,m (1b)

where C is the trade-off parameter.
When uncertainties exist in the data points, suppose there arem training data points

in R
n , use x̃i = [x̃i1, . . . , x̃in]� ∈ R

n, i = 1, . . . ,m to denote the uncertain training
data points and yi ∈ {+1,−1}, i = 1, . . . ,m to denote the respective class labels. The
chance-constrained program is to ensure the small probability of misclassification for
the uncertain data. In practice, the exact probability distribution of the randomvariables
are often unknown and hard to obtain. Only some properties of the distribution could
be acquired, such as the first and second moments. To deal with the uncertainty in
probability distribution, the distributionally robust or ambiguous chance constraint
is developed and adopted to represent a conservative approximation of the original
problem. LetP be the set of all probability distributions that have the known properties
ofP, then the distributionally robust chance-constrained SVM formulation is [3,4,17]:

(SVM − RCCP)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (2a)
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s.t. sup
P∈P

P

{
yi (w�x̃i + b) ≤ 1 − ξi

}
≤ ε, ξi ≥ 0, i = 1, . . . ,m (2b)

where 0 < ε < 1 is a prameter given by the user and close to 0, P{·} is the probability
distribution. This model ensures an upper bound on the misclassification probability
over all distributions in P .

The chance constraints are typically non-convex.As infinite number of distributions
could have the knownproperties, the robust chance-constrained SVMrequires efficient
transformations of the chance constraints to make the problem solvable. Previous
research showed that when second-order moment information, the mean vector μi =
E[x̃i ] ∈ R

n and the covariance matrix �i = E
[
(x̃i − μi )(x̃i − μi )

�] ∈ S
n of the

random variable x̃i are known, robust chance-constrained SVM can be reformulated
into equivalent SDP and SOCP models [24]. The SDP model is as follows

(SVM − SDP)

min
w,b,ξi ,Ni ,αi

1

2
‖w‖22 + C

m∑

i=1

ξi (3a)

s.t. αi − 1

ε
Trace(�iNi ) ≥ 0, ξi ≥ 0 (3b)

Ni � 0, Ni +
[

0 1
2 yiw

1
2 yiw

� yi b + ξi − 1 − αi

]
� 0 (3c)

where �i =
[
�i + μiμ

�
i μi

μ�
i 1

]
; and for matrix A, A � 0 means A is positive semi-

definite.
The equivalent SOCP model is as follows

(SVM − SOCP)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (4a)

s.t. yi (w�μi + b) ≥ 1 − ξi +
√
1 − ε

ε

∣∣∣∣

∣∣∣∣�
1
2
i w

∣∣∣∣

∣∣∣∣
2

(4b)

ξi ≥ 0, i = 1, . . . ,m (4c)

The SOCP model also has a nice geometric interpretation that for each point xi ,
it is no longer a single point, but an ellipsoid centered at μi , and shaped with the

covariance matrix
√

1−ε
ε

�
1
2
i :

E
(
μi ,

√
1 − ε

ε
�

1
2
i

)
=

{
x = μi +

√
1 − ε

ε
�

1
2
i a : ||a||2 ≤ 1

}
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The SOCP constraint (4b) is satisfied if and only if

yi (w�xi + b) ≥ 1 − ξi , ∀xi ∈ E

(
μi ,

√
1 − ε

ε
�

1
2
i

)

Therefore, this constraint is defining an uncertainty set E
(
μi ,

√
1−ε
ε

�
1
2
i

)
for each

uncertain training data point xi . If all the points in the uncertainty set satisfy yi (w�xi +
b) ≥ 1 − ξi , then the chance-constraint is guaranteed to be satisfied. This transforms
the RCCP into a robust optimization problem over the uncertainty set.

The SDP and SOCP models can be solved by conic linear programming solvers
like SeDuMi [18] using primal-dual interior method [14,19,20]. However, it is far
from sufficient to obtain solutions for large-scale data. Even though basic soft-margin
linear SVM model is a convex quadratic programming model and much simpler and
easier to solve than SDP and SOCPmodels, quadratic solvers are still facing difficulty
for large-scale data. Different solving methods have been proposed for large-scale
linear SVM including dual coordinate descent method [12] and stochastic subgradient
descent method [6,16,26]. According to the structure of robust chance-constrained
SVM reformulations, stochastic subgradient descent method is chosen to be the foun-
dation for solving robust chance-constrained SVM with large-scale data.

3 Stochastic subgradient descent method

For soft-margin SVM model (SVM-SoftMargin), the non-negative slack variables
ξi = max{0, 1 − yi (w�xi + b)}. Then the model can be expressed in this particular
form:

min
w,b

f (w, b) = 1

2
w�w + C

m∑

i=1

max{0, 1 − yi (w�xi + b)} (5)

The second term in (5) is also called penalty function. The function L(xi , yi ) =
max{0, 1− yi (w�xi + b)} decreases linearly for yi (w�xi + b) ≤ 1 and then remains
0.This is called hinge function, and its value is called the hinge loss.When yi (w�xi+b)
is 1 or more, the value of L is 0. L increases linearly as yi (w�xi + b) decreases for
smaller values.

The soft-margin SVM is a quadratic program and can be solved by classic quadratic
programming approaches. But for large-scale data, subgradient descent method has
advantages as shown in [15]. To minimize f (w, b), the subgradient of the equation
with respect to w and b are computed, and then the current w and b are moved in the
opposite direction of the subgradient. Adding an extra dimension to the feature vector
of each data point with value 1, b can be made part of the weight vector w.

A constant ηt is chosen as the fraction of the subgradient that to be moved in each
iteration. The subgradient descent iteration is:

wt+1 ← wt − ηt∇w f (6)
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The subgradient of the loss function L(xi , yi )with respect tow is discontinuous.When
yi (w�xi + b) < 1, it is −yixi ; when yi (w�xi + b) > 1, it is 0. Then the subgradient
of f with respect to w can be computed as

∇w f = w + C
m∑
i=1

∇wL(xi , yi )

= w + C
m∑
i=1

{
0, if yi (w�xi + b) ≥ 1

−yixi , otherwise

(7)

The subgradient descent method can be summarized as follows:

Batch Subgradient Descent Method
Iterate until convergence:

Evaluate: ∇wf = w + C
m
i=1 ∇wL(xi, yi)

Update: wt+1 ← wt − ηt∇wf

This is called batch subgradient descent because all the training points are consid-
ered as a batch in each iteration. The problem of the batch subgradient descent method
is that to compute ∇w f , it needs to go over all the m training data points. When the
data size is large, it can be too time-consuming to visit every training point and often
iterates many times before convergence.

The stochastic subgradient descent [6,26], on the other hand, considers one training
point at a time and adjusts the current solution in the direction evaluated by the only
training point:

∇w ft = w + Cm∇wL(xit , yit ) (8)

The training point (xit , yit ) can be selected randomly or according to some fixed
strategy.

The stochastic subgradient descent method can be summarized as follows:

Stochastic Subgradient Descent Method
Iterate until convergence:

Evaluate: ∇wft = w + Cm∇wL(xit , yit)
Update: wt+1 ← wt − ηt∇wft

The batch subgradient descent method improves the value of the objective function
at every step. The stochastic subgradient descent method improves the value in a noisy
way since it only considers one point at each iteration. The batch subgradient descent
method takes fewer iterations to converge, but in each iteration, it takes much longer
to compute. In practice, the stochastic subgradient descent method is much faster.

For the batch subgradient descent method, when the initial estimate w0 is close
enough to the optimum, and when the step size controller ηt is sufficiently small, this
method achieves linear convergence under sufficient regularity assumptions [11]. For
an ε-accurate solution ŵ with f (ŵ) ≤ minw f (w) + ε and iterations t , it is showed
that − log ε ∼ t [6].
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Table 1 Computational cost of
batch subgradient descent
method and stochastic
subgradient descent method

BSGD SSGD

Time per iteration mn n

Iterations to ε-accuracy log(1/ε) 1/ε

Time to ε-accuracy mn log(1/ε) n/ε

For the stochastic subgradient descent method, the convergence often requires that
ηt decreases and satisfies

∑
t η

2
t < ∞ and

∑
t ηt = ∞ [7]. The convergence speed of

the stochastic subgradient descent method is closely related to the step size controller
ηt since the stochastic subgradient descent method uses a noisy approximation of the
true subgradient. Murata [13] showed that the best convergence speed is achieved with
ηt ∼ t−1 under sufficient regularity conditions and the expectation of the residual error
decreases with similar speed E[ε] ∼ t−1. In [5], the authors explicitly expressed ηt as
1/(t + t0).

The computational cost of the batch subgradient descent method and stochastic
subgradient descent method are summarized in Table 1. When the data sizem is large,
the stochastic subgradient descent method performs asymptotically better than the
batch subgradient descent method.

As an application of the stochastic subgradient descent method, Pegasos (Primal
Estimated sub-GrAdient SOlver for SVM) [16] studied the SVMproblem in this form:

min
w

f (w) = λ

2
w�w + 1

m

m∑

i=1

max{0, 1 − yiw�xi } (9)

The initial solution w1 is set to be the zero vector. On iteration t , a random training
point (xit , yit ) is chosen uniformly with it ∈ {1, . . . ,m}. The objective function is
approximated with the training point (xit , yit ):

ft (w) = λ

2
w�w + max{0, 1 − yitw

�xit } (10)

And the subgradient is:

∇w ft = λwt − 1[yitw�
t xit <1]yit xit (11)

where 1[yitw�xit <1] is the indicator function and the whole term has similar meaning
with ∇wL(xit , yit ). The step size is set to be ηt = 1/(λt) for wt+1 ← wt − ηt∇w ft .
Then the update could be written as:

wt+1 ←
(
1 − 1

t

)
wt + ηt1[yitw�

t xit <1]yit xit (12)

Pegasos canobtain an ε-accuracy solution in Q̃(1/ε) iterationswith highprobability
over the choice of the random training points. In each iteration, it involves only one
inner product between w and x. For n-dimensional data, the overall runtime required
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to obtain an ε-accuracy solution is Q̃(n/ε), with no direct dependency on the number
m of training points, and suited for large-scale data sets.

4 Large-scale robust chance-constrained SVM solution approach

As analyzed in Sect. 2, the robust chance-constrained SVM model can be trans-
formed into equivalent SDP and SOCP models. Traditional SDP and SOCP solvers
like SeDuMi utilize the primal-dual interior method and the complexity grows inten-
sively with data size. For large-scale robust chance-constrained SVM, the tools used to
solve large-scale SVM are required instead of the normal conic programming solvers.

Since the SDP and SOCP reformulations are equivalent, in this section for solving
large-scale robust chance-constrained SVM problems, the (SVM-SOCP) model is the
basic model analyzed. Write the model in the form similar to subgradient descent
method:

min
w,b

f (w, b) = 1

2
w�w

+ C
m∑

i=1

max

{
0, 1 − yi (w�μi + b) +

√
1 − ε

ε
w��iw

}
(13)

Weneed to obtain the subgradient∇w f . For term g(w) =
√

1−ε
ε
w��iw, as

∂w��iw
∂w =

(�i + ��
i )w = 2�iw, according to the chain rule, we have

∇wg =
√
1 − ε

ε

2�iw

2
√
w��iw

=
√
1 − ε

ε

�iw

||�
1
2
i w||2

(14)

Then for L(μi ,�i , yi ) = max
{
0, 1−yi (w�μi+b)+

√
1−ε
ε
w��iw

}
, the subgradient

∇wL(μi ,�i , yi ) =

⎧
⎪⎨

⎪⎩

0, if yi (w�μi + b) ≥ 1 +
√

1−ε
ε

||�
1
2
i w||2

−yiμi +
√

1−ε
ε

�iw

||�
1
2
i w||2

, otherwise
(15)

For stochastic subgradient descent method and its application Pegasos, in each
iteration, only one randomly selected training point (xit , yit ) is considered. Comparing
the Pegasos model and the SVM model in our expression, for wt+1 ← wt − ηt∇w ft ,
the subgradient considered is 1/(Cm) of the original f :

∇w ft = 1

Cm
w + ∇wL(μit ,�it , yit ) (16)

And the step size ηt = 1/(λt) where λ = 1/(Cm) according to the relationship
between Pegasos model and the standard SVM model, therefore, ηt = Cm/t .
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The update is then:

wt+1 ←
(
1 − 1

t

)
wt

+ ηt1[
yit (w

�
t μit +bt )<1+

√
1−ε
ε

||�
1
2
it
wt ||2

]
(
yitμit −

√
1 − ε

ε

�itwt

||�
1
2
it
wt ||2

)
(17a)

bt+1 ← bt + ηt1[
yit (w

�
t μit +bt )<1+

√
1−ε
ε

||�
1
2
it
wt ||2

]yit (17b)

The large-scale robust chance-constrained SVM solving method with T as the
predeterminednumber of iterations and the output as (wT+1, bT+1) canbe summarized
as follows:

SVM-RCCP SSGD Method
Initialize w1 = 0, b1 = 0
For t = 1, 2, . . . , T

Choose it ∈ {1, . . . , m} uniformly at random
Set ηt = Cm/t

If yit(wt μit + bt) < 1 + 1−ε
ε ||Σ 1

2
it
wt||2, then

Set wt+1 ← (1 − 1/t)wt + ηt yitμit − 1−ε
ε

Σitwt

||Σ
1
2
it
wt||2

bt+1 ← bt + ηtyit

Else i.e., yit(wt μit + bt) ≥ 1 + 1−ε
ε ||Σ 1

2
it
wt||2

Set wt+1 ← (1 − 1/t)wt

bt+1 ← bt

It needs to point out that in the literatures of large-scale SVM [6,12,16,26], b is

either not considered or included intow, and there is no nonlinear term
√

1−ε
ε

||�
1
2
i w||2

in the constraint. The convergence rate of the original stochastic subgradient descent
method is based on convex functions. Adding b and the nonlinear term actually makes
the function not convex any more. Nevertheless, the numerical experiments show
convincing results for the potential of the above proposed method to process large-
scale data sets.

5 Numerical experiments

In numerical experiments, first, the Wisconsin breast cancer data and Ionosphere data
from UCI datasets are used. Wisconsin breast cancer data has 683 samples with 9-
dimensional features. Ionosphere data has 351 samples with 34-dimensional features.
The mean vector μi used in the experiments is the original value of the data xi .
The covariance matrix of the training data in +1 class and −1 class are calculated
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respectively. Then the covariance matrix �i of each training sample xi is set to be
1/100 of the covariancematrix of its corresponding class. The robust chance-constraint
probability ε is set to be 0.1 in all experiments.

When using the proposed SVM-RCCP SSGD method, the sampling procedure is
chosen to be sampling without replacement and new permutation is generated every
epoch. This means that, a random permutation is chosen over the training points,
then the iterations are performed in accordance to the selected order. After going
over all the training data, i.e. completing one epoch, a new random permutation is
generated, and the following iterations in this epoch are performed in the new order.
In the experiments, the number of iterations is set to be 2m, 10m, and 50m respectively,
wherem is the number of training samples. So the iterations goes 2 epochs, 10 epochs,
and 50 epochs respectively over the training data. As comparison, SeDuMi is used to
solve the SOCP reformulation of robust chance-constrained SVM directly.

The results forWisconsin breast cancer data over 20 runs with random partitions are
shown in Table 2. It can be seen from the results that SVM-RCCP SSGDmethod runs
much faster than SeDuMi while maintaining acceptable Test Set Accuracy (TSA). For
2m iterations in SSGD, the average TSA is the smallest and the standard deviation
is largest. This means that the results from 2m iterations are not reaching good TSA
and not stable as well. For 10m and 50m, the TSA are comparable, while 50m has
less standard deviation. But the running time for 50m is almost 5 times of the 10m.
Therefore, for this data, 10m is a better choice to obtain both high TSA and short
running time. The running time of SSGD 10m is more than 20 times less than the
SeDuMi while the TSA is almost the same.

The results for Ionosphere data over 20 runs with random partitions are shown in
Table 3. SSGD is still getting similar TSA results with SeDuMi while the running
time is much less.

Besides these datasets, a larger dataset, MAGIC Gamma Telescope data from UCI
datasets is experimented.MAGICGammaTelescope data has 19,020 sampleswith 10-
dimensional features. Among these samples, 12332 belong to class gamma (signal),
6688 belong to class hadron (background). Similar uncertainty and sampling settings
are used for this data when doing the experiments. The results over 20 runs with
random partitions are shown in Table 4.

Table 2 Wisconsin breast cancer data using SeDuMi and SVM-RCCP SSGD

SeDuMi SSGD 2m SSGD 10m SSGD 50m

20 % training, 80 % test

Running time 0.857 ± 0.063 0.013 ± 0.002 0.034 ± 0.001 0.146 ± 0.002

Test set accuracy (%) 96.16 ± 0.98 93.90 ± 4.23 96.09 ± 1.27 96.08 ± 0.64

80 % training, 20 % Test

Running time 2.542 ± 0.094 0.029 ± 0.001 0.117 ± 0.001 0.564 ± 0.007

Test set accuracy (%) 96.72 ± 1.12 95.84 ± 2.12 96.68 ± 1.31 96.70 ± 1.28
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Table 3 Ionosphere data using SeDuMi and SVM-RCCP SSGD

SeDuMi SSGD 2m SSGD 10m SSGD 50m

20 % training, 80 % test

Running time 0.728 ± 0.053 0.010 ± 0.000 0.024 ± 0.001 0.099 ± 0.003

Test set accuracy (%) 83.56 ± 2.50 76.89 ± 7.96 81.09 ± 4.63 82.85 ± 2.93

80 % training, 20 % test

Running time 1.961 ± 0.044 0.022 ± 0.001 0.083 ± 0.002 0.394 ± 0.013

Test set accuracy (%) 85.93 ± 3.48 80.71 ± 5.07 85.57 ± 4.14 85.64 ± 4.33

Table 4 MAGIC gamma telescope data using SeDuMi and SVM-RCCP SSGD

SeDuMi SSGD 2m SSGD 10m SSGD 50m

20 % training, 80 % test

Running time 41.198 ± 4.558 0.215 ± 0.002 1.031 ± 0.011 5.011 ± 0.115

Test set accuracy (%) 76.80 ± 0.52 64.29 ± 6.61 72.09 ± 4.09 74.35 ± 3.87

80 % training, 20 % test

Running time – 0.850 ± 0.028 4.061 ± 0.075 20.105 ± 0.654

Test set accuracy (%) – 67.47 ± 6.49 72.14 ± 4.71 74.68 ± 3.39

For this data, when choosing 80 % of the samples as training points, SeDuMi
cannot get solutions of the robust chance-constrained SVM problem because of the
data size. SVM-RCCP SSGD method still obtain reasonable TSA results in accept-
able time. Our proposed method has the potential for processing large-scale data
sets.

6 Conclusions

Practical problems in data sciences require to process big data. For the SDP and SOCP
reformulations of robust chance-constrained SVM, existing solvers like SeDuMi
do not have enough computational efficiency. Considering data with uncertainties,
this paper adapts the stochastic subgradient descent method to solve robust chance-
constrained SVM on large-scale data sets. Numerical experiments show the efficiency
of the proposed approach.

For large-scale data, our proposed method has an advantage to allow the data resid-
ing on disk, while conic programming solvers normally require to keep all the data
in memory. Because of the hidden nature of our proposed method, our method has
the potential by parallel implementation to improve the efficiency. In the future, we
believe the proposed algorithm with the robust chance-constrained SVM model can
have broader applications in many areas.

Acknowledgments Research was partially supported by a DTRA grant and the Paul and Heidi Brown
Preeminent Professorship in Industrial and Systems Engineering, University of Florida.
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