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1. Statement of the Problem 

For the road network, the User Equilibrium (UE) is based on the assumption that each user 

wishes to minimize his/her travel time, so travel times on all used paths of each O-D pair 

are equal, and the travel time on any unused path is equal to or greater than the used 

travel time. In that case, no user can reduce his/her travel time by unilaterally changing 

path, so the network has become stationary, i.e. user equilibrium. 

 

The mathematical expression for UE is: 
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The first two formula guarantee that the travel times on all the used paths from r  to s  

are equal to the minimum path travel time, and the travel time on any unused path is 

equal to or greater than the minimum path travel time, which is in accordance with the 

user equilibrium assumption. The third formula is the O-D flow constraint. The fourth 

formula is the non-negative constraints of path flow. 

 

Based on KKT conditions, the above expression can be transformed to BMW formulation: 
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Similar formulation can be achieved for System Optimum (SO) of the network. System 

optimum means that the total system travel time has reached the minimum, thus the SO 

formulation is: 
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It is noticed that the difference between SO formulation and UE formulation is only in the 

objective function. By introducing the marginal link travel time: 
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The objective function of SO would become: 
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Similar to the objective function of UE, except using marginal link travel time rather than 

link travel time. Therefore, the same solution procedure can be applied to both UE and 

SO. 

 

From the system perspective, SO is a better solution. However, system optimum needs all 

drivers to act to minimize the total system travel time instead of their own travel time, so 

some drivers may be able to reduce their travel time by unilaterally switching routes, 

which makes the SO flow unstable. From the above analysis, SO can be transformed to 

some kind of UE when using marginal link travel time instead of link travel time. Therefore, 

if the user pay the full cost that his/her travel incurs to the system, i.e. marginal travel 

time, the system will be optimum and stable. The marginal-cost pricing is to charge the 

users the difference between marginal travel time and average travel time: 
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With the above toll rate at each link, users will be forced to choose their route based on 

marginal travel time. Consequently, the resulting UE is SO without toll. 
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2. Description of the Solution Procedures 

Using the concept of marginal travel time, the SO and UE could have the same formulation, 

thus the same solution procedure can be applied to both UE and SO. Here Frank-Wolfe 

Algorithm is utilized. The basic idea behind Frank-Wolfe Algorithm is the iterative descent 

method. In the following, the decent direction and the step size calculation procedure is 

first stated, then the whole procedure of Frank-Wolfe Algorithm is shown. 

2.1 The Decent Direction 

The descent direction n
y  is achieved by solving: 
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For the BMW formulation, this would become: 
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Within each iteration, n

ax  is fixed, so  n

a at x  is also fixed, i.e. the travel time on each 

link is fixed. To minimize the total travel time, the O-D flow should be assigned to the 

shortest path connecting that O-D pair, i.e. “all-or-nothing” assignment. To find the 

shortest path, Dijkstra’s Algorithm is applied. 

Dijkstra’s Algorithm 

Dijkstra’s Algorithm finds the shortest path from original point to every node in the 

network, so the shortest path from o  to d  contains the shortest paths from o  to 

every node on the path to d , which yields to the correctness of the algorithm. It divides 

the nodes into two groups: permanently labeled ( S ) and temporary labeled ( S ). 

Permanent label is the true shortest distance from origin. Temporary label is the shortest 

distance from origin using only permanently labeled nodes. At each iteration, the smallest 

temporary label becomes permanent. The algorithm stops when there is no more 

temporary labeled node. The pseudo-code of Dijkstra’s Algorithm is as following: 



Frank-Wolfe Algorithm for UE and SO Problems   Ximing Wang 

Page 4 of 5 
 

  begin 

   𝑆 ≔ ∅;   𝑆̃ ≔ 𝑁 

   𝑑(𝑖) ≔ ∞ for each node 𝑖 ∈ 𝑁 

   𝑑(𝑜) ≔ 0 and 𝑝𝑟𝑒𝑑(𝑜) ≔ 0 

   while |𝑆| < 𝑛 do 

   begin 

    let 𝑖 ∈ 𝑆̃ be a node for which 𝑑(𝑖) = min{𝑑(𝑗): 𝑗 ∈ 𝑆̃}; 

    𝑆 ≔ 𝑆 ∪ {𝑖}; 

    𝑆̃ ≔ 𝑆̃ − {𝑖}; 

    for each (𝑖, 𝑗) ∈ 𝐴(𝑖) do 

     if 𝑑(𝑗) > 𝑑(𝑖) + 𝑐𝑖𝑗  then 𝑑(𝑗): = 𝑑(𝑖) + 𝑐𝑖𝑗  and 𝑝𝑟𝑒𝑑(𝑗) ≔ 𝑖; 

   end; 

  end; 

With Dijkstra’s Algorithm, the shortest path tree for the origin node could be found. Then 

the flows to each destination could be assigned to the corresponding shortest path. The 

procedure is repeated until flows from all origins have been assigned. This all-or-nothing 

assignment can help to get the decent direction flows y . 

2.2 The Step Size 

The step size can be determined by conducting the line search: 
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To get the optimal step size, the bisection method is used. 

Bisection Method 

Bisection method searches for the point where the derivative of the objective function is 

zero. It is an iterative interval reduction procedure. The interval is reduced at each 

iteration while ensuring that the minimum lies within the current interval. The iteration 

continues until a good approximation is obtained. The scheme of bisection method is as 

following: 

  1. Let [𝑎𝑛 𝑏𝑛] be the current interval 

  2. 𝑥𝑛 =
𝑎𝑛+𝑏𝑛

2
 

  3. If 
𝑑𝑧(𝑥𝑛)

𝑑𝑥
< 0, discard [𝑎𝑛 𝑥𝑛] and [𝑥𝑛 𝑏𝑛] → [𝑎𝑛+1 𝑏𝑛+1]; 

   Otherwise, discard [𝑥𝑛 𝑏𝑛] and [𝑎𝑛 𝑥𝑛] → [𝑎𝑛+1 𝑏𝑛+1] 

  4. If stopping criterion 
|𝑏𝑁−𝑎𝑁|

2
≤ 𝜀 met, the optimal point 𝑥∗ =

𝑎𝑁+𝑏𝑁

2
, stop; 

   Otherwise, go to step 2. 
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For the BMW formulation, the bisection method is used to find the optimal step size   

that satisfies: 
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2.3 The Scheme of Frank-Wolfe Algorithm 

The detailed calculation procedures of the descent direction and step size are stated 

above. The whole scheme of Frank-Wolfe Algorithm is as following: 

  Step 0.  Initialization. Perform all-or-nothing assignment based on 𝑡𝑎 = 𝑡𝑎(0), ∀𝑎. 

    This yields 𝑥1. Set counter 𝑛 ≔ 1. 

  Step 1.  Update. Set 𝑡𝑎
𝑛 = 𝑡𝑎(𝑥𝑎

𝑛), ∀𝑎. 

  Step 2.  Direction finding. Perform all-or-nothing assignment based on 𝑡𝑎
𝑛, ∀𝑎. 

    This yields (direction) flows 𝑦𝑛. 

  Step 3.  Line search. Find 0 ≤ 𝛼𝑛 ≤ 1 that solves 

    ∑ (𝑦𝑎
𝑛 − 𝑥𝑎

𝑛) ∙ 𝑡𝑎(𝑥𝑎
𝑛 + 𝛼𝑛 ∙ (𝑦𝑎

𝑛 − 𝑥𝑎
𝑛))𝑎 = 0 

  Step 4.  Move. Set 𝑥𝑛+1 = 𝑥𝑛 + 𝛼𝑛(𝑦𝑛 − 𝑥𝑛) 

  Step 5.  Convergence test. If 
√∑ (𝑥𝑎

𝑛+1−𝑥𝑎
𝑛)

2
𝑎

∑ 𝑥𝑎
𝑛

𝑎
< 𝜀, stop; 

    otherwise 𝑛 ≔ 𝑛 + 1, and go to Step 1. 

 


