
Frank-Wolfe Algorithm for UE and SO Problems Ximing Wang

Page 1 of 5

Frank-Wolfe Algorithm for UE and SO Problems

Ximing Wang

1. Statement of the Problem

For the road network, the User Equilibrium (UE) is based on the assumption that each user

wishes to minimize his/her travel time, so travel times on all used paths of each O-D pair

are equal, and the travel time on any unused path is equal to or greater than the used

travel time. In that case, no user can reduce his/her travel time by unilaterally changing

path, so the network has become stationary, i.e. user equilibrium.

The mathematical expression for UE is:

 min

min

0, , ,

0, , ,

, ,

0, , ,

rs rs rs

k k

rs rs

k

rs

k rs

k

rs

k

f c c k r s

c c k r s

f q r s

f k r s

  

  

 

 



The first two formula guarantee that the travel times on all the used paths from r to s

are equal to the minimum path travel time, and the travel time on any unused path is

equal to or greater than the minimum path travel time, which is in accordance with the

user equilibrium assumption. The third formula is the O-D flow constraint. The fourth

formula is the non-negative constraints of path flow.

Based on KKT conditions, the above expression can be transformed to BMW formulation:

   
0

,

min d

s.t. , ,

0, , ,

,

ax

a

a

rs

k rs

k

rs

k

rs rs

a k a k

rs k

Z x t

f q r s

f k r s

x f a A

 





 

 

 







Similar formulation can be achieved for System Optimum (SO) of the network. System

optimum means that the total system travel time has reached the minimum, thus the SO

formulation is:

Frank-Wolfe Algorithm for UE and SO Problems Ximing Wang

Page 2 of 5

   

,

min

s.t. , ,

0, , ,

,

a a a

a

rs

k rs

k

rs

k

rs rs

a k a k

rs k

Z x x t x

f q r s

f k r s

x f a A



 

 

 







It is noticed that the difference between SO formulation and UE formulation is only in the

objective function. By introducing the marginal link travel time:

   
   a a a a a

a a a a a

a a

t x x t x
t x t x x

x x

 
  

 

The objective function of SO would become:

 
 

 
0 0

d d
a ax x

a a a

a a a a

a a aa

x t x
x t x t

x
  


 


   

Similar to the objective function of UE, except using marginal link travel time rather than

link travel time. Therefore, the same solution procedure can be applied to both UE and

SO.

From the system perspective, SO is a better solution. However, system optimum needs all

drivers to act to minimize the total system travel time instead of their own travel time, so

some drivers may be able to reduce their travel time by unilaterally switching routes,

which makes the SO flow unstable. From the above analysis, SO can be transformed to

some kind of UE when using marginal link travel time instead of link travel time. Therefore,

if the user pay the full cost that his/her travel incurs to the system, i.e. marginal travel

time, the system will be optimum and stable. The marginal-cost pricing is to charge the

users the difference between marginal travel time and average travel time:

   
 

SO

SO SO

a

a a

a a a a a a

a x

t x
t x t x x

x



  



With the above toll rate at each link, users will be forced to choose their route based on

marginal travel time. Consequently, the resulting UE is SO without toll.

Frank-Wolfe Algorithm for UE and SO Problems Ximing Wang

Page 3 of 5

2. Description of the Solution Procedures

Using the concept of marginal travel time, the SO and UE could have the same formulation,

thus the same solution procedure can be applied to both UE and SO. Here Frank-Wolfe

Algorithm is utilized. The basic idea behind Frank-Wolfe Algorithm is the iterative descent

method. In the following, the decent direction and the step size calculation procedure is

first stated, then the whole procedure of Frank-Wolfe Algorithm is shown.

2.1 The Decent Direction

The descent direction n
y is achieved by solving:

 
 

min

s.t. ,

n

n

i

i i

ij i j

i

z
z y

x

h y b j J

 
 
 
 

  





x
y

For the BMW formulation, this would become:

     

,

min min min

s.t. , ,

0, , ,

,

T T
n n n

a a a
y y y

a

rs

k rs

k

rs

k

rs rs

a k a k

rs k

z x y t x y t x y

f q r s

f k r s

y f a A

     

 

 

 







Within each iteration, n

ax is fixed, so  n

a at x is also fixed, i.e. the travel time on each

link is fixed. To minimize the total travel time, the O-D flow should be assigned to the

shortest path connecting that O-D pair, i.e. “all-or-nothing” assignment. To find the

shortest path, Dijkstra’s Algorithm is applied.

Dijkstra’s Algorithm

Dijkstra’s Algorithm finds the shortest path from original point to every node in the

network, so the shortest path from o to d contains the shortest paths from o to

every node on the path to d , which yields to the correctness of the algorithm. It divides

the nodes into two groups: permanently labeled (S) and temporary labeled (S).

Permanent label is the true shortest distance from origin. Temporary label is the shortest

distance from origin using only permanently labeled nodes. At each iteration, the smallest

temporary label becomes permanent. The algorithm stops when there is no more

temporary labeled node. The pseudo-code of Dijkstra’s Algorithm is as following:

Frank-Wolfe Algorithm for UE and SO Problems Ximing Wang

Page 4 of 5

 begin

 𝑆 ≔ ∅; 𝑆̃ ≔ 𝑁

 𝑑(𝑖) ≔ ∞ for each node 𝑖 ∈ 𝑁

 𝑑(𝑜) ≔ 0 and 𝑝𝑟𝑒𝑑(𝑜) ≔ 0

 while |𝑆| < 𝑛 do

 begin

 let 𝑖 ∈ 𝑆̃ be a node for which 𝑑(𝑖) = min{𝑑(𝑗): 𝑗 ∈ 𝑆̃};

 𝑆 ≔ 𝑆 ∪ {𝑖};

 𝑆̃ ≔ 𝑆̃ − {𝑖};

 for each (𝑖, 𝑗) ∈ 𝐴(𝑖) do

 if 𝑑(𝑗) > 𝑑(𝑖) + 𝑐𝑖𝑗 then 𝑑(𝑗): = 𝑑(𝑖) + 𝑐𝑖𝑗 and 𝑝𝑟𝑒𝑑(𝑗) ≔ 𝑖;

 end;

 end;

With Dijkstra’s Algorithm, the shortest path tree for the origin node could be found. Then

the flows to each destination could be assigned to the corresponding shortest path. The

procedure is repeated until flows from all origins have been assigned. This all-or-nothing

assignment can help to get the decent direction flows y .

2.2 The Step Size

The step size can be determined by conducting the line search:

  min

s.t. 0 1

n n nz x y x






  

 

To get the optimal step size, the bisection method is used.

Bisection Method

Bisection method searches for the point where the derivative of the objective function is

zero. It is an iterative interval reduction procedure. The interval is reduced at each

iteration while ensuring that the minimum lies within the current interval. The iteration

continues until a good approximation is obtained. The scheme of bisection method is as

following:

 1. Let [𝑎𝑛 𝑏𝑛] be the current interval

 2. 𝑥𝑛 =
𝑎𝑛+𝑏𝑛

2

 3. If
𝑑𝑧(𝑥𝑛)

𝑑𝑥
< 0, discard [𝑎𝑛 𝑥𝑛] and [𝑥𝑛 𝑏𝑛] → [𝑎𝑛+1 𝑏𝑛+1];

 Otherwise, discard [𝑥𝑛 𝑏𝑛] and [𝑎𝑛 𝑥𝑛] → [𝑎𝑛+1 𝑏𝑛+1]

 4. If stopping criterion
|𝑏𝑁−𝑎𝑁|

2
≤ 𝜀 met, the optimal point 𝑥∗ =

𝑎𝑁+𝑏𝑁

2
, stop;

 Otherwise, go to step 2.

Frank-Wolfe Algorithm for UE and SO Problems Ximing Wang

Page 5 of 5

For the BMW formulation, the bisection method is used to find the optimal step size 

that satisfies:

    
 

    

0
d

0

n n n
a a ax y x

n n n
a

a

n n n n n

a a a a a a

a

tz x y x

y x t x y x



 

 



  

   


 

      





2.3 The Scheme of Frank-Wolfe Algorithm

The detailed calculation procedures of the descent direction and step size are stated

above. The whole scheme of Frank-Wolfe Algorithm is as following:

 Step 0. Initialization. Perform all-or-nothing assignment based on 𝑡𝑎 = 𝑡𝑎(0), ∀𝑎.

 This yields 𝑥1. Set counter 𝑛 ≔ 1.

 Step 1. Update. Set 𝑡𝑎
𝑛 = 𝑡𝑎(𝑥𝑎

𝑛), ∀𝑎.

 Step 2. Direction finding. Perform all-or-nothing assignment based on 𝑡𝑎
𝑛, ∀𝑎.

 This yields (direction) flows 𝑦𝑛.

 Step 3. Line search. Find 0 ≤ 𝛼𝑛 ≤ 1 that solves

 ∑ (𝑦𝑎
𝑛 − 𝑥𝑎

𝑛) ∙ 𝑡𝑎(𝑥𝑎
𝑛 + 𝛼𝑛 ∙ (𝑦𝑎

𝑛 − 𝑥𝑎
𝑛))𝑎 = 0

 Step 4. Move. Set 𝑥𝑛+1 = 𝑥𝑛 + 𝛼𝑛(𝑦𝑛 − 𝑥𝑛)

 Step 5. Convergence test. If
√∑ (𝑥𝑎

𝑛+1−𝑥𝑎
𝑛)

2
𝑎

∑ 𝑥𝑎
𝑛

𝑎
< 𝜀, stop;

 otherwise 𝑛 ≔ 𝑛 + 1, and go to Step 1.

